Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Variable P supply affects N metabolism in a legume tree, Virgilia divaricata, from nutrient-poor Mediterranean-type ecosystems

Anathi Magadlela A , Waafeka Vardien A , Aleysia Kleinert A , Emma T. Steenkamp B and Alexander J. Valentine A C
+ Author Affiliations
- Author Affiliations

A Botany and Zoology Department, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.

B Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa.

C Corresponding author. Email: alexvalentine@mac.com

Functional Plant Biology 43(3) 287-297 https://doi.org/10.1071/FP15262
Submitted: 28 August 2015  Accepted: 11 November 2015   Published: 4 February 2016

Abstract

Virgilia divaricata Adamson is a forest margin legume that is known to invade the N- and P-poor soils of the mature fynbos, implying that it tolerates variable soil N and P levels. It is not known how the legume uses inorganic N from soil and atmospheric sources under variable P supply. Little is known about how P deficiency affects the root nodule metabolic functioning of V. divaricata and the associated energy costs of N assimilation. This study aimed to determine whether P deficiency affects the metabolic status of roots and nodules, and the impact on the routes of N assimilation in V. divaricata.V. divaricata had reduced biomass, plant P concentration and biological nitrogen fixation during P deficiency. Based on adenylate data, P-stressed nodules maintained their P status better than P-stressed roots. V. divaricata was able to alter C and N metabolism differently in roots and nodules under P stress. This was achieved via internal P cycling by possible replacement of membrane phospholipids with sulfolipids and galactolipids, and increased reliance on the pyrophosphate (PPi)-dependent metabolism of sucrose via UDP-glucose (UDPG) and to fructose-6-phosphate (Fru-6-P). P-stressed roots mostly exported ureides as organic N and recycled amino acids via deaminating glutamate dehydrogenase. In contrast, P-stressed nodules largely exported amino acids. Compared with roots, nodules showed more P conservation during low P supply. The roots and nodules of V. divaricata metabolised N differently during P stress, meaning that these organs may contribute differently to the success of this plant in soils from forest to fynbos.

Additional keywords: fynbos, P deficiency, N2 fixation, N assimilation, amino acids, ureides.


References

Almeida JP, Hartwig UA, Freshner M, Nösberger J, Lüsher A (2000) Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). Journal of Experimental Botany 51, 1289–1297.
Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVyjtbs%3D&md5=62796e3458f9122c3e0414400c38bef2CAS | 10937705PubMed |

Appels MA, Haaker H (1991) Glutamate oxalacetate transaminase in pea root nodules. Plant Physiology 95, 740–747.
Glutamate oxalacetate transaminase in pea root nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVeltr4%3D&md5=bc612299aae3ed84003b804d075c4563CAS | 16668048PubMed |

Atkins CA (1991) Ammonia assimilation and export of nitrogen from legume nodule. In ‘Biology and biochemistry of nitrogen fixation’. (Eds M Dilworth and A Glen) pp. 293–319. (Elsevier Science Publishers: Amsterdam)

Aubert S, Blingy R, Douce R, Gout E, Ratcliffe RG, Roberts JK (2001) Contribution of glutamate dehydrogenase to mitochondrial glutamate metabolism studies by 13C and 31P nuclear magnetic resonance. Journal of Experimental Botany 52, 37–45.
Contribution of glutamate dehydrogenase to mitochondrial glutamate metabolism studies by 13C and 31P nuclear magnetic resonance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvVOitr0%3D&md5=5235eacb63a9a121f5cb2d7f87aa944dCAS | 11181711PubMed |

Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein dye binding. Analytical Biochemistry 72, 248–254.
A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein dye binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVehtrY%3D&md5=436242ae9b449e7335b086f00b7e6e5fCAS | 942051PubMed |

Brown G, Mitchell DT (1986) Influence of fire on the soil phosphorus status in sandplain lowland fynbos, south western Cape. South African Journal of Botany 52, 67–72.

Bryan JK (1980) Synthesis of the aspartate family and branched chain amino acids. In ‘The biochemistry of plants: a comprehensive treatise. Vol. 5’. (Ed. BJ Miflin) pp. 403–452 (Academic Press: New York)

Cocks MP, Stock WD (2001) Field patterns of nodulation in fifteen Aspalathus species and their ecological role in the fynbos vegetation of southern Africa. Basic and Applied Ecology 2, 115–125.
Field patterns of nodulation in fifteen Aspalathus species and their ecological role in the fynbos vegetation of southern Africa.Crossref | GoogleScholarGoogle Scholar |

Coetsee C, Wigley BJ (2013) Virgilia divaricata may facilitate forest expansion in the afrotemperate forests of the southern Cape, South Africa. Koedoe 55, 1–8.
Virgilia divaricata may facilitate forest expansion in the afrotemperate forests of the southern Cape, South Africa.Crossref | GoogleScholarGoogle Scholar |

Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil 245, 35–47.
Root exudates as mediators of mineral acquisition in low-nutrient environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVCit70%3D&md5=ac9a42249e92ec734c125bd0172d0345CAS |

Dilworth MJ (1974) Dinitrogen fixation. Annual Review of Plant Physiology 25, 81–144.
Dinitrogen fixation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXkslekur8%3D&md5=ef84418379dba56dbd7428627a0c2b24CAS |

El-Shora HE, Ali AS (2011) Changes in activities of nitrogen metabolism enzymes in cadmium stressed marrow seedlings. Asian Journal of Plant Science 10, 117–124.
Changes in activities of nitrogen metabolism enzymes in cadmium stressed marrow seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2itb7E&md5=170c5ff840ddb533dc7b468aa450cd1fCAS |

Farnham MW, Miller SS, Griffith SM, Vance CP (1990) Aspartate aminotransferase in alfafa root nodules. II. Immunological distinction between two forms of enzymes. Plant Physiology 93, 603–610.
Aspartate aminotransferase in alfafa root nodules. II. Immunological distinction between two forms of enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkslCqsLo%3D&md5=fba65d72cf999d0c97c419c66ae3d907CAS | 16667510PubMed |

Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40, 503–537.
Carbon isotope discrimination and photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktlKmu70%3D&md5=eedbc63279977192077254b365f54f69CAS |

Givan CV (1980) Aminotransferases in higher plants. In. ‘The biochemistry of plants. Vol 5’. (Eds PK Stumpf, EE Conn) pp. 329–357 (Academic Press: New York)

Glevarec G, Bouton S, Jaspard E, Riou MT, Cliquet JB, Suzuki A, Limami AM (2004) Respective roles of the glutamine synthetase/glutamate synthase cycle and glutamate dehydrogenase in ammonium and amino acid metabolism during germination and post-germinative growth in the model legume Medicago truncatula. Planta 219, 286–297.
Respective roles of the glutamine synthetase/glutamate synthase cycle and glutamate dehydrogenase in ammonium and amino acid metabolism during germination and post-germinative growth in the model legume Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVSgsrs%3D&md5=9e7ea8858eaada371b14ae1609cbe9e8CAS | 14991406PubMed |

Goldblatt P, Manning J (2000) ‘Cape plants: a conspectus of the Cape flora of South Africa. Strelitzia. Vol. 9.’ (National Botanical Institute: Pretoria)

González A, Gordon AJ, James CL, Arrese-Igor C (1995) The role of sucrose synthase in the response of soybean nodules to drought. Journal of Experimental Botany 46, 1515–1523.
The role of sucrose synthase in the response of soybean nodules to drought.Crossref | GoogleScholarGoogle Scholar |

Gordon AJ, Lea PJ, Rosenberg C, Trinchant JC (2001) Nodule formation and function. In ‘Plant nitrogen’. (Eds PJ Lea, JF Morot-Gaudry) pp. 101–138. (Springer-Verlag: Berlin)

Gout E, Aubert S, Bligny R, Rébeillé F, Nonomura AR, Benson AA, Douce R (2000) Metabolism of methanol in plant cells. Carbon-13 nuclear magnetic resonance studies. Plant Physiology 123, 287–296.
Metabolism of methanol in plant cells. Carbon-13 nuclear magnetic resonance studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFems70%3D&md5=1987475c4b005bd7e637d72bd239996dCAS | 10806245PubMed |

Greinwald R, Veen G, Van Wyk BE, Witte L, Czygan FC (1989) Distribution and taxonomic significance of major alkaloids in the genus Virgilia. Biochemical Systematics and Ecology 17, 231–238.
Distribution and taxonomic significance of major alkaloids in the genus Virgilia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlt1WksA%3D%3D&md5=88fb6294ceafd291b99cb8ce24ce57b0CAS |

Groat RG, Vance CP (1981) Root nodule enzymes of ammonia assimilation in alfalfa (Medicago sativa L.). Plant Physiology 67, 1198–1203.
Root nodule enzymes of ammonia assimilation in alfalfa (Medicago sativa L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksl2itro%3D&md5=879fd4c279b3deff1838994217decec8CAS | 16661836PubMed |

Groom PG, Lamont BB (2015) ‘Plant life of Southern Australia – adaptation for survival. (De Gruyter Open: Warsaw)

Groves RH (1983) ‘Nutrient cycling in Australian heath and South African fynbos.’ (Springer-Verlag: Berlin)

Hanks JF, Tolbert NE, Shubert KR (1981) Localization of enzymes of ureides biosynthesis in peroxisomes and microsomes of nodules. Plant Physiology 68, 65–69.
Localization of enzymes of ureides biosynthesis in peroxisomes and microsomes of nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXkslKqsLs%3D&md5=e2d0fd4c2426526e46558a9e0feb24fcCAS | 16661891PubMed |

Hernández G, Ramírez M, Valdés-López O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Chueng F, Wu HC, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP (2007) Phosphorus stress in common bean: root transcript and metabolic response. Plant Physiology 144, 752–767.
Phosphorus stress in common bean: root transcript and metabolic response.Crossref | GoogleScholarGoogle Scholar | 17449651PubMed |

Herppich M, Herppich WB, Willert DJ (2002) Leaf nitrogen content and photosynthesis activity in relation to soil nutrient availability in coastal and mountain fynbos plants (South Africa). Basic and Applied Ecology 3, 329–337.
Leaf nitrogen content and photosynthesis activity in relation to soil nutrient availability in coastal and mountain fynbos plants (South Africa).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsV2ntLs%3D&md5=fe24ff482edd7a85bab06759b74252d2CAS |

Hewitt EJ (1966) ‘Sand and water culture methods used in the study of plant nutrition. 2nd edn.’ (Commonwealth Agricultural Bureau: London)

Hoffman MT, Moll EJ, Boucher C (1987) Post-fire succession at Pella, a South African lowland fynbos site. South African Journal of Botany 53, 370–374.

Ireland RJ, Lea PJ (1999) The enzymes of glutamine, glutamate, asparagines and aspartate metabolism. In ‘Plant amino acids: biochemistry and biotechnology’. (Ed. BK Singh) pp. 49–109. (Marcel Dekker: New York)

Jakobsen I (1985) The role of phosphorus in nitrogen fixation by young pea plants (Pisum sativum). Physiologia Plantarum 84, 399–408.

Kaizer JJ (1984) Nitrate reductase and glutamate synthetase activity in leaves and roots of nitrate-fed Helianthus annus L. Plant and Soil 77, 127–130.
Nitrate reductase and glutamate synthetase activity in leaves and roots of nitrate-fed Helianthus annus L.Crossref | GoogleScholarGoogle Scholar |

Lambers H, Cawthray GR, Giavalisco P, Kuo J, Laliberte E, Pearse SJ, Scheible W-R, Stitt M, Teste F, Turner BL (2012) Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulpholipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. New Phytologist 196, 1098–1108.
Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulpholipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Wjur%2FN&md5=1f198de43b4c970f2ca670c05e82831bCAS | 22937909PubMed |

Le Roux MR, Ward CL, Botha FC, Valentine AJ (2006) Routes of pyruvate synthesis in phosphorus-deficient lupin roots and nodules. New Phytologist 169, 399–408.
Routes of pyruvate synthesis in phosphorus-deficient lupin roots and nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlKntb8%3D&md5=75879179c252123336208cc71f0076e8CAS | 16411942PubMed |

Lea PJ, Miflin BJ (1974) Alternative route for nitrogen assimilation in higher plants. Nature 251, 614–616.
Alternative route for nitrogen assimilation in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXht1Wkt7s%3D&md5=c93155c73cb61b073138247b1f92f2afCAS | 4423889PubMed |

Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG (2007) Asparagine in plants. Annals of Applied Biology 150, 1–26.
Asparagine in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtF2isbk%3D&md5=6899d14047dedb59ad604448a7f528cfCAS |

Lehmann T, Dabert M, Nowak W (2011) Organ-specific expression of glutamate dehydrogenase (GDH) subunits in yellow lupine. Journal of Plant Physiology 168, 1060–1066.
Organ-specific expression of glutamate dehydrogenase (GDH) subunits in yellow lupine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVais70%3D&md5=3f2babb0095efc73884b2ea9903e7f3eCAS | 21333382PubMed |

Magadlela A, Kleinert A, Dreyer LL, Valentine AJ (2014) Low-phosphorus conditions affect the nitrogen nutrition and associated carbon costs of two legume tree species from a Mediterranean-type ecosystem. Australian Journal of Botany 62, 1–9.
Low-phosphorus conditions affect the nitrogen nutrition and associated carbon costs of two legume tree species from a Mediterranean-type ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsFWisbo%3D&md5=85ef78d219607e82f960547d6b3cf240CAS |

Manders PT, Richardson DM, Masson PH (1992) Is fynbos a stage in succession to forest? Analysis of the perceived ecological distinction between two communities. In: ‘Fire in South African mountain fynbos: ecosystem, community and species response at Swartboskloof. Ecological studies 93’. (Eds BW van Wilgen, DM Richardson, FJ Kruger, HJ van Hensbergen) pp. 81–107. (Springer-Verlag: Berlin)

Masclaux-Daubresse C, Valadier M-H, Carrayol E, Reisdorf-Cren M, Hirel B (2002) Diurnal changes in the expression of glutamate dehydrogenase and nitrate reductase are involved in the C/N balance of tobacco source leaves. Plant, Cell & Environment 25, 1451–1462.
Diurnal changes in the expression of glutamate dehydrogenase and nitrate reductase are involved in the C/N balance of tobacco source leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFWhtbo%3D&md5=026813851d49b4c99bff32606a400be5CAS |

Maseko ST, Dakora FD (2013) Plant enzymes, root exudates, cluster roots and mycorrhizal symbiosis are the drivers of P nutrition in native legumes growing in P deficient soils of the Cape fynbos in South Africa. Journal of Agricultural Science and Technology A 3, 331–340.

Melo-Oliveira R, Oliveira IC, Coruzzi GM (1996) Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proceedings of the National Academy of Sciences of the United States of America 93, 4718–4723.
Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtVKls7o%3D&md5=308607b458eaaf67c7ffe4b8304c9ff8CAS | 8643469PubMed |

Minchin FR, Witty JF (2005) Respiratory/carbon costs of symbiotic nitrogen fixation in legumes. In: ‘Plant respiration’. (Eds H Lambers, M Ribas-Carbo) pp. 195–205. (Springer: Dordrecht)

Miyashita Y, Good AG (2008) NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation. Journal of Experimental Botany 59, 667–680.
NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsValsrk%3D&md5=45d0eefb7e8633efcb332883b13b677eCAS | 18296429PubMed |

Muofhe ML, Dakora FD (1999) Nitrogen nutrition in nodulated field plants of the shrub tea legume Aspalathus linearis assessed using 15N natural abundance. Plant and Soil 209, 181–186.
Nitrogen nutrition in nodulated field plants of the shrub tea legume Aspalathus linearis assessed using 15N natural abundance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt1emsrw%3D&md5=469a2f7882780cf118d9ce072f499286CAS |

Nanamori M, Shinano T, Wasaki J, Yamamura T, Roa IM, Osaki M (2004) Low phosphorus tolerance mechanisms: phosphorus recycling and photosynthate partitioning in the tropical forage grass, Brachiaria hybrid cultivar mulato compared with rice. Plant & Cell Physiology 45, 460–469.
Low phosphorus tolerance mechanisms: phosphorus recycling and photosynthate partitioning in the tropical forage grass, Brachiaria hybrid cultivar mulato compared with rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFKhtbw%3D&md5=9dce8cf345f6539bd8fb1960fe53b90dCAS |

Nielsen KL, Eshel A, Lynch JP (2001) The effects of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. Journal of Experimental Botany 52, 329–339.
The effects of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVaju7w%3D&md5=efca7612262c421d785832680467658cCAS | 11283178PubMed |

Olivera M, Tejera N, Iribarne C, Ocaña A, Lluch C (2004) Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): effect of phosphorus. Physiologia Plantarum 121, 498–505.
Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): effect of phosphorus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFOiur8%3D&md5=6cbfa6c93a4197974f18b462ec1ba7f6CAS |

Plaxton WC (2010) Metabolic flexibility helps plants to survive stress. In: ‘Plant physiology’. 5th edn (Eds L Taiz, E Zeiger) pp. 305–342. (Sinauer Associates Inc.: Sunderland, MA)

Power SC, Cramer MD, Verboom GA, Chimphango SBM (2010) Does P acquisition constrain legume persistence in the fynbos of the Cape floristic region? Plant and Soil 334, 33–46.
Does P acquisition constrain legume persistence in the fynbos of the Cape floristic region?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaqur7F&md5=a1a0620513f98f8ae3be4ecd31782fd1CAS |

Restivo FM (2004) Molecular cloning of glutamate dehydrogenase genes of Nicotiana plumbaginifolia: structure analysis and regulation of their expression by physiological and stress conditions. Plant Science 166, 971–982.
Molecular cloning of glutamate dehydrogenase genes of Nicotiana plumbaginifolia: structure analysis and regulation of their expression by physiological and stress conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs12msbY%3D&md5=6d8a4a16029d706137880f39df89f2c2CAS |

Robinson SA, Slade AP, Fox GG, Phillips R, Ratcliffe RG, Stewart GR (1991) The role of glutamate dehydrogenase in plant nitrogen metabolism. Plant Physiology 95, 509–516.
The role of glutamate dehydrogenase in plant nitrogen metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtl2qsLY%3D&md5=d63a311dd877c6b09cdc97f072bffbabCAS | 16668014PubMed |

Rufty TW, Israel DW, Volk RJ, Qui J, Sa T (1993) Phosphate regulation in nitrate assimilation in soybean. Journal of Experimental Botany 44, 879–891.
Phosphate regulation in nitrate assimilation in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvFCmtLg%3D&md5=8da873063b1acf38d7260c661958ad4dCAS |

Ryan E, Fottrell PF (1974) Subcellular localization of enzymes involved in the assimilation of ammonia by soybean root nodules. Plant Molecular Biology 19, 2647–2652.

Schubert KR (1981) Enzymes of purine biosynthesis and catabolism in Glycine max: comparing activities with N2 fixation and composition of xylem exudates during nodule development. Plant Physiology 68, 1115–1122.
Enzymes of purine biosynthesis and catabolism in Glycine max: comparing activities with N2 fixation and composition of xylem exudates during nodule development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XjslKk&md5=9bd96c59e72e22a9734db30d3f7d2520CAS | 16662061PubMed |

Schubert KR (1986) Products of biological nitrogen fixation in higher plants: synthesis, transport, and metabolism. Annual Review of Plant Physiology 37, 539–574.
Products of biological nitrogen fixation in higher plants: synthesis, transport, and metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksFOrtLw%3D&md5=e37dbd241fcd2fcf2e18cb412ee716acCAS |

Shearer GB, Kohl DM (1986) N2-fixation in the field settings: estimations based on natural 15N abundance. Australian Journal of Plant Physiology 13, 699–756.

Sieciechowicz KA, Joy KW, Ireland RJ (1988) The metabolism of asparagine in plants. Phytochemistry 27, 663–671.
The metabolism of asparagine in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitVWltL8%3D&md5=2f5b2f1fb04b256c7b849b02eec465aaCAS |

Silvente S, Camas A, Lara M (2003) Heterogeneity of sucrose synthase genes in bean (Phaseolus vulgaris L.): evidence for a nodule enhanced sucrose synthase gene. Journal of Experimental Botany 54, 749–755.
Heterogeneity of sucrose synthase genes in bean (Phaseolus vulgaris L.): evidence for a nodule enhanced sucrose synthase gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1aru7w%3D&md5=38de462fbdcd5c1b932cda1e4ca1b43aCAS | 12554718PubMed |

Skopelitis DS, Parancychianakis NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG, Roubelakis-Anfelakis KA (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenase to form glutamate for proline synthesis in tobacco and grapevines. The Plant Cell 18, 2767–2781.
Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenase to form glutamate for proline synthesis in tobacco and grapevines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ejurjJ&md5=97242a058915e48d8f0dcb584d47becaCAS | 17041150PubMed |

Stewart GR, Larher F (1980) Accumulation of amino acids and related compounds in relation to environmental stress. In ‘The Biochemistry of Plants, Vol. 5, Amino Acids and Derivatives’. (Ed. B. J. Miflin) pp. 609–635. (Academic Press: New York)

Straker CJ (1996) Ericoid mycorrhizal: ecological and host specificity. Mycorrhiza 6, 215–225.
Ericoid mycorrhizal: ecological and host specificity.Crossref | GoogleScholarGoogle Scholar |

Sulieman S, Van Ha C, Schulze J, Tran L-S (2013) Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. Journal of Experimental Botany 64, 2701–2712.
Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVaks7%2FP&md5=0b93c8f9d493b8d3fb3faef84ea12ee4CAS | 23682114PubMed |

Tang C, Hinsinger P, Drevon JJ, Jaillard B (2001) Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula L. Annals of Botany 88, 131–138.
Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVOltL4%3D&md5=7fea03df16b9f3a3e0c779a2a3dbb6efCAS |

Tercé-Larforgue T, Dubois F, Ferrario-Méry S, Pou de Crecenzo M-A, Sangwan R, Hirel B (2004a) Glutamate dehydrogenase of tobacco is mainly induced in the cytosol of phloem companion cells when ammonia is provided either externally or released during photorespiration. Plant Physiology 136, 4308–4317.
Glutamate dehydrogenase of tobacco is mainly induced in the cytosol of phloem companion cells when ammonia is provided either externally or released during photorespiration.Crossref | GoogleScholarGoogle Scholar |

Tercé-Larforgue T, Mäck G, Hirel B (2004b) New insights towards the function of glutamate dehydrogenase revealed during source–sink transition of tobacco (Nicotiana tabacum) plants grown under different nitrogen regimes. Physiologia Plantarum 120, 220–228.
New insights towards the function of glutamate dehydrogenase revealed during source–sink transition of tobacco (Nicotiana tabacum) plants grown under different nitrogen regimes.Crossref | GoogleScholarGoogle Scholar |

Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiology 101, 339–344.

Theodorou ME, Elrifi IR, Turpin DH, Plaxton WC (1991) Effects of phosphorus limitation on respiratory metabolism in the green alga Selenastrum minutum L. Plant Physiology 95, 1089–1095.
Effects of phosphorus limitation on respiratory metabolism in the green alga Selenastrum minutum L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisVCjt7w%3D&md5=d2fb50c77c581bec412211200b80229bCAS | 16668095PubMed |

Todd CD, Tipton PA, Blevins DG, Piedras P, Pineda M, Polacco JC (2006) Update on ureide degradation in legumes. Journal of Experimental Botany 57, 5–12.
Update on ureide degradation in legumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCmsbvO&md5=a00ae77ca8115b2133d0087ef0b75056CAS | 16317038PubMed |

Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition in low-nutrient environments. Plant and Soil 245, 35–47.

Vardien W, Mesjasz-Przybylowicz J, Przybylowicz WJ, Wang Y, Steenkamp ET, Valentine AJ (2014) Nodules of fynbos legume Virgilia divaricata have high functional plasticity under variable P supply levels. Journal of Plant Physiology 171, 1732–1739.
Nodules of fynbos legume Virgilia divaricata have high functional plasticity under variable P supply levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVarsrbP&md5=76487ffe4c418d8c55ac3fe7d6a5bfc9CAS | 25217716PubMed |

Wallsgrove RM, Keys AJ, Lea PJ, Miflin BJ (1983) Photosynthesis, photorespiration and nitrogen metabolism. Plant, Cell & Environment 6, 301–309.

Winkler RG, Blevins DG, Polacco JC, Randall DD (1987) Ureide catabolism of soybean. II. Pathway of catabolism in intact leaf tissue. Plant Physiology 83, 585–591.
Ureide catabolism of soybean. II. Pathway of catabolism in intact leaf tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhslejs7w%3D&md5=8c905db3cfe09fb62c190ebf8e9d13ddCAS | 16665292PubMed |

Wisheu IC, Rosenzweig ML, Olsvig-Whittaker L, Shmida A (2000) What makes nutrient-poor Mediterranean heathlands so rich in plant diversity? Evolutionary Ecology Research 2, 935–955.

Zavaleta-Pastor M, Sohlenkamp C, Gao J-L, Guan Z, Zaheer R, Finan TM, Raetz CRH, López-Lara IM, Geiger O (2010) Sinorhizobium meliloti phospholipase C required for lipid remodeling during P limitation. Proceedings of the National Academy of Sciences of the United States of America 107, 302–307.
Sinorhizobium meliloti phospholipase C required for lipid remodeling during P limitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFCktQ%3D%3D&md5=06835cf44e60ca24e9ac85e6d3826bc7CAS | 20018679PubMed |