Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Dynamic responses of photosynthesis and the antioxidant system during a drought and rehydration cycle in peanut plants

Ana Furlan A B C , Eliana Bianucci A , María del Carmen Tordable A , Aleysia Kleinert B , Alexander Valentine B and Stella Castro A
+ Author Affiliations
- Author Affiliations

A Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km. 601, 5800 Río Cuarto, Córdoba, Argentina.

B Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.

C Corresponding author. Email: afurlan@exa.unrc.edu.ar

Functional Plant Biology 43(4) 337-345 https://doi.org/10.1071/FP15206
Submitted: 23 July 2015  Accepted: 30 November 2015   Published: 1 February 2016

Abstract

Drought stress is one of the most important environmental factors that adversely affect the productivity and quality of crops. Most studies focus on elucidating plant responses to this stress but the reversibility of these effects is less known. The aim of this work was to evaluate whether drought-stressed peanut (Arachis hypogaea L.) plants were capable of recovering their metabolism upon rehydration, with a focus on their antioxidant system. Peanut plants in the flowering phase (30 days after sowing) were exposed to drought stress by withholding irrigation during 14 days and subsequent rehydration during 3 days. Under these conditions, physiological status indicators, reactive oxygen species production and antioxidant system activity were evaluated. Under drought stress, the stomatal conductance, photosynthetic quantum yield and 13C : 12C ratio of the peanut plants were negatively affected, and also they accumulated reactive oxygen species. The antioxidant system of peanut plants showed increases in superoxide dismutase-, ascorbate peroxidase- and glutathione reductase-specific activities, as well as the total ascorbate content. All of these responses were reversed upon rehydration at 3 days. The efficient and dynamic regulation of variables related to photosynthesis and the antioxidant system during a drought and rehydration cycle in peanut plants was demonstrated. It is suggested that the activation of the antioxidant system could mediate the signalling of drought stress responses that enable the plant to survive and recover completely within 3 days of rehydration.

Additional keywords: ascorbate, Arachis hypogaea L., reactive oxygen species, water stress.


References

Aebi H (1984) Catalase in vitro. Methods in Enzymology 105, 121–126.
Catalase in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltVKis7s%3D&md5=a787c8d94f03cc2abe3e410eac513bf6CAS | 6727660PubMed |

Amako K, Chen GX, Asada K (1994) Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant & Cell Physiology 35, 497–504.

Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods in Enzymology 113, 548–555.
Determination of glutathione and glutathione disulfide in biological samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmsFenuw%3D%3D&md5=63c2bcc930da4095abc20a25dc6264ecCAS | 4088074PubMed |

Beauchamp C, Fridovich I (1973) Isoenzymes of SOD from wheat germ. Biochimica et Biophysica Acta 317, 50–64.
Isoenzymes of SOD from wheat germ.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXks1ejtbo%3D&md5=9c9ab11c689158f2cdd65eaf168710c5CAS | 4723247PubMed |

Bellaloui N (2011) Effect of water stress and foliar boron application on seed protein, oil, fatty acids, and nitrogen metabolism in soybean. American Journal of Plant Sciences 2, 692–701.
Effect of water stress and foliar boron application on seed protein, oil, fatty acids, and nitrogen metabolism in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFOrsbo%3D&md5=52c2f20efefa754115c2c9a979375df3CAS |

Bhatnagar-Mathur P, Jyostna Devi EM, Srinivas Reddy ED, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Reports 26, 2071–2082.
Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWrtr%2FI&md5=5ddee0502035347d9dd301b118b01abbCAS | 17653723PubMed |

Boote K (1982) Growth stages of peanut (Arachis hypogaea L.). Peanut Science 9, 35–40.
Growth stages of peanut (Arachis hypogaea L.).Crossref | GoogleScholarGoogle Scholar |

Bowler C, Van Camp W, Van Montagu M, Inzé D (1994) Superoxide dismutase in plants. Critical Reviews in Plant Sciences 13, 199–218.
Superoxide dismutase in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvFOis7w%3D&md5=1b858eb077924bb6a4c8789809ada848CAS |

Bradford M (1976) A rapid sensitive method for the quantification the microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry 72, 248–254.
A rapid sensitive method for the quantification the microgram quantities of protein utilizing the principle of protein–dye binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVehtrY%3D&md5=436242ae9b449e7335b086f00b7e6e5fCAS | 942051PubMed |

Bright J, Desikan R, Tancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. The Plant Journal 45, 113–122.
ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFOntw%3D%3D&md5=18acd90b320cec33b37334e983bacdfcCAS | 16367958PubMed |

Burk R (1996) ‘Soil survey laboratory methods manual.’ Soil Survey Investigations Report 42, Ver. 3.0. (National Soil Survey Center: Lincoln, NE).

Celikkol Akcay U, Ercan O, Kavas M, Yildiz L, Yilmaz C, Oktem HA, Yucel M (2010) Drought-induced oxidative damage and antioxidant responses in peanut (Arachis hypogea L.) seedlings. Plant Growth Regulation 61, 21–28.
Drought-induced oxidative damage and antioxidant responses in peanut (Arachis hypogea L.) seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVWku7k%3D&md5=67c1f192df66918ad68e3a102e5e66abCAS |

Cho D, Shin D, Wook Jeon B, Kwak JM (2009) ROS-mediated ABA signaling. Journal of Plant Biology 52, 102–113.
ROS-mediated ABA signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFSgsrc%3D&md5=06bfae45d31ba76ead7503cf673e143aCAS |

Collino DJ, Dardanelli JL, Sereno R, Racca RW (2001) Physiological responses of Argentine peanut varieties to water stress. Light interception, radiation use efficiency and partitioning of assimilates. Field Crops Research 70, 177–184.
Physiological responses of Argentine peanut varieties to water stress. Light interception, radiation use efficiency and partitioning of assimilates.Crossref | GoogleScholarGoogle Scholar |

Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species. Production, scavenging and signaling. Plant Signaling & Behavior 3, 156–165.
Drought stress and reactive oxygen species. Production, scavenging and signaling.Crossref | GoogleScholarGoogle Scholar |

Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proceedings of the National Academy of Sciences of the United States of America 83, 3811–3815.
Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xkt1Wkur8%3D&md5=118fce032a37644b897999f806b69d02CAS | 16593704PubMed |

Deikman J, Petracek M, Heard JE (2012) Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Current Opinion in Biotechnology 23, 243–250.
Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVKns70%3D&md5=f39c3deb3d43ecc35ae013f7f7df9257CAS | 22154468PubMed |

Flohé L, Gunzler W (1984) Assays of glutathione peroxidase. Methods in Enzymology 105, 114–120.
Assays of glutathione peroxidase.Crossref | GoogleScholarGoogle Scholar | 6727659PubMed |

Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signalling 11, 861–905.
Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitlWhsr0%3D&md5=61427b96b3326974becfe2c5fa66c476CAS |

Foyer CH, Noctor G (2015) Stress-triggered redox signalling: what’s in pROSpect? Plant, Cell & Environment
Stress-triggered redox signalling: what’s in pROSpect?Crossref | GoogleScholarGoogle Scholar |

Frahry G, Schopfer P (2001) NADH-stimulated, cyanide-resistant superoxide production in maize coleoptiles analyzed with a tetrazolium-based assay. Planta 212, 175–183.
NADH-stimulated, cyanide-resistant superoxide production in maize coleoptiles analyzed with a tetrazolium-based assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1Kktw%3D%3D&md5=4b15752fa4cf5bd0b54651b8f759f702CAS | 11216837PubMed |

Furlan A, Llanes A, Luna V, Castro S (2012) Physiological and biochemical responses to drought stress and subsequent rehydration in the symbiotic association peanut–Bradyrhizobium sp. ISRN Agronomy 2012, Article ID 318083
Physiological and biochemical responses to drought stress and subsequent rehydration in the symbiotic association peanut–Bradyrhizobium sp.Crossref | GoogleScholarGoogle Scholar |

Furlan A, Llanes A, Luna V, Castro S (2013) Abscisic acid mediation in hydrogen peroxide production in peanut under water stress. Biologia Plantarum 57, 555–558.
Abscisic acid mediation in hydrogen peroxide production in peanut under water stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2rsrrJ&md5=cbd9b4bb50864c74d28ed5e762ead994CAS |

Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48, 909–930.
Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKnu7fF&md5=89c5e3d5bd5f75c75063e33a62bffd0cCAS | 20870416PubMed |

Guo Z, Ou W, Lu S, Zhong Q (2006) Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry 44, 828–836.
Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsl2htQ%3D%3D&md5=945f93cd110709a74eb5225574767b66CAS | 17098438PubMed |

Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercaptric acid formation. The Journal of Biological Chemistry 249, 7130–7139.

Halliwell B, Gutteridge JMC (1999) ‘Free radicals in biology and medicine.’ edn 3. (Oxford University Press: Oxford, UK).

Hoagland D, Arnon D (1950) The water culture method for growing plants without soil. California Agricultural Experiment Station Bulletin 347, 1–39.

Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M (1998) Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiology 116, 173–181.
Oxidative damage in pea plants exposed to water deficit or paraquat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkslCqsg%3D%3D&md5=0776abf9e79bcdb9ab4db6b9420a5b9dCAS |

Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany 53, 2401–2410.
Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVKgsg%3D%3D&md5=f09744a8dccf00233467633ee5096578CAS | 12432032PubMed |

Kottapalli KR, Burow MD, Burow G, Burke J, Puppala N (2007) Molecular characterization of the US peanut mini core collection using microsatellite markers. Crop Science 47, 1718–1725.
Molecular characterization of the US peanut mini core collection using microsatellite markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsF2ru7c%3D&md5=8b705796d5cdb4a7678cf70257b00d88CAS |

Kume A, Satomura T, Tsuboi N, Chiwa M, Hanba YT, Nakane K, Horikoshi T, Sakugawa H (2003) Effects of understory vegetation on the ecophysiological characteristics of an overstory pine, Pinus densiflora. Forest Ecology and Management 176, 195–203.
Effects of understory vegetation on the ecophysiological characteristics of an overstory pine, Pinus densiflora.Crossref | GoogleScholarGoogle Scholar |

Lascano HR, Antonicelli GE, Luna CM, Melchiorre MN, Gómez LD, Racca RW, Trippi VS, Casano LM (2001) Antioxidant system response of different wheat cultivars under drought: field and in vitro studies. Australian Journal of Plant Physiology 28, 1095–1102.
Antioxidant system response of different wheat cultivars under drought: field and in vitro studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlU%3D&md5=de5fef652a56f9d3cc141df1da053bedCAS |

Law M, Charles S, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. The Biochemical Journal 210, 899–903.
Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlslejtb8%3D&md5=afcf95bc816c779f8c4c8ab08e14ceefCAS | 6307273PubMed |

Li Y-J, Hai R-L, Du X-H, Jiang X-N, Lu H (2009) Over-expression of a Populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance. Plant Breeding 128, 404–410.
Over-expression of a Populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFSqtbrO&md5=3a47afcfed634d5661bf0031e03d4050CAS |

Lu S, Su W, Li H, Guo Z (2009) Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiology and Biochemistry 47, 132–138.
Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCjtrg%3D&md5=04d3e49895bf002c560766d5db143753CAS | 19042137PubMed |

Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S, Foyer CH (2004) Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. Journal of Experimental Botany 56, 417–423.
Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat.Crossref | GoogleScholarGoogle Scholar | 15569704PubMed |

Luo M, Liang XQ, Dang P, Holbrook CC, Bausher MG, Lee RD, Guo BZ (2005a) Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress. Plant Science 169, 695–703.
Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVCrsrk%3D&md5=df7307d0d07e00445a5cfb961415ee48CAS |

Luo M, Dang P, Guo BZ, He G, Holbrook C, Bausher MG, Lee RD (2005b) Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Science 45, 346–353.
Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsV2mt74%3D&md5=ab24fd14aafaf05b2ee39a94becf1b23CAS |

Mittler R, Blumwald E (2015) The roles of ROS and ABA in systemic acquired acclimation. The Plant Cell 27, 64–70.
The roles of ROS and ABA in systemic acquired acclimation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1Wmtrw%3D&md5=5792ddbd2d560d70750f507ecbfe565dCAS | 25604442PubMed |

Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. The Plant Journal 5, 397–405.
Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkslylsrg%3D&md5=685e6ae6a131feabff407945aa5a3c86CAS | 8180623PubMed |

Moretzsohn MC, Leoi L, Proite K, Guimarães PM, Leal-Bertioli SCM, Gimenes MA, Martins WS, Valls JFM, Grattapaglia D, Bertioli DJ (2005) A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theoretical and Applied Genetics 111, 1060–1071.
A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2ksbvI&md5=7ac44f0eb7c85e89d46363e82716afd3CAS | 16088397PubMed |

Mortimer PE, Perez-Fernandez MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biology & Biochemistry 40, 1091–1027.

Mortimer PE, Perez-Fernandez MA, Valentine AJ (2009) NH4+ nutrition affects the photosynthetic and respiratory C sinks in the dual symbiosis of a mycorrhizal legume. Soil Biology & Biochemistry 41, 2115–2121.
NH4+ nutrition affects the photosynthetic and respiratory C sinks in the dual symbiosis of a mycorrhizal legume.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKnsrjF&md5=5df44c7d29b80af5822c2f9910e3ad6dCAS |

Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant & Cell Physiology 28, 131–140.

Nautiyal PC, Ravindra V, Joshi YC (1995) Gas exchange and leaf water relations in two peanut cultivars of different drought tolerance. Biologia Plantarum 37, 371–374.
Gas exchange and leaf water relations in two peanut cultivars of different drought tolerance.Crossref | GoogleScholarGoogle Scholar |

Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiology 164, 1636–1648.
The roles of reactive oxygen metabolism in drought: not so cut and dried.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsV2jsr0%3D&md5=121a057f1440cdaf297caa45d463bb07CAS | 24715539PubMed |

Pozzi FI, Etchart V, Díaz D, Royo OM, Díaz C, Moreno MV, Gieco JO (2014) Genetic characterization of cultivated peanut genetic resources (Arachis hypogaea L.) using microsatellite markers. Revista de la Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo 46, 1–13.

Rao MV, Hale BA, Ormrod DP (1995) Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide. Role of antioxidant enzymes. Plant Physiology 109, 421–432.

Sassi S, González EM, Aydi S, Arrese-Igor C, Abdely C (2008) Tolerance of common bean to long-term osmotic stress is related to nodule carbon flux and antioxidant defenses: evidence from two cultivars with contrasting tolerance. Plant and Soil 312, 39–48.
Tolerance of common bean to long-term osmotic stress is related to nodule carbon flux and antioxidant defenses: evidence from two cultivars with contrasting tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1aju7nJ&md5=a5f9059ba0f442086572ab0233b8b565CAS |

Schaedle M, Bassham J (1977) Chloroplast glutathione reductase. Plant Physiology 59, 1011–1012.
Chloroplast glutathione reductase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktlCqs7c%3D&md5=afb7db75099869bfb6d7cd415f650ce3CAS | 16659940PubMed |

Scholander PF, Hammel HT, Hemmingsen EA, Bradstreet ED (1964) Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proceedings of the National Academy of Sciences of the United States of America 52, 119–125.
Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zit1GhtQ%3D%3D&md5=ef955ae042c1dfb0616343f5323f6254CAS | 16591185PubMed |

Simpson CE, Krapovickas A, Valls JM (2002) History of Arachis including evidence of A. hypogaea progenitors. Peanut Science 28, 79–81.

Stadtman ER (1992) Protein oxidation and aging. Science 257, 1220–1224.
Protein oxidation and aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xls1yitrk%3D&md5=25de02416584a1cbbe70a48ad13172ffCAS | 1355616PubMed |

Vincent J (1970) ‘A manual for the practical study of root nodule bacteria.’ IBP Handbook No 15. (Blackwell Scientific Publication: Oxford, UK)

Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany
Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance.Crossref | GoogleScholarGoogle Scholar | 25788732PubMed |

Xu J, Yang J, Duan X, Jiang Y, Zhang P (2014) Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biology 14, 208
Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz).Crossref | GoogleScholarGoogle Scholar | 25091029PubMed |

Zabalza A, Gálvez L, Marino D, Royuela M, Arrese-Igor C, González EM (2008) Effects of ascorbate and its immediate precursor, galactono-1,4-lactone on the response of nitrogen-fixing pea nodules to water stress. Journal of Plant Physiology 165, 805–812.
Effects of ascorbate and its immediate precursor, galactono-1,4-lactone on the response of nitrogen-fixing pea nodules to water stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaltLo%3D&md5=c9ecb7125f5871c17f310640f75a07c1CAS | 17931744PubMed |

Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M (2007) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytologist 175, 36–50.
Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Cksrg%3D&md5=085880354bfbb409b5734c7ded319a03CAS | 17547665PubMed |

Zhou B, Guo Z, Xing J, Huang B (2005) Nitric oxide is involved in abscisic acid induced antioxidant activities in Stylosanthes guianensis. Journal of Experimental Botany 56, 3223–3228.
Nitric oxide is involved in abscisic acid induced antioxidant activities in Stylosanthes guianensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GlsbfJ&md5=ebc324c29345125f8f0face8428258a0CAS | 16263901PubMed |

Zilli CA, Santa-Cruz D-M, Yannarelli GG, Noriega GO, Tomaro ML, Balestrasse KB (2009) Heme oxygenase contributes to alleviate salinity damage in Glycine max L. leaves. International Journal of Cell Biology
Heme oxygenase contributes to alleviate salinity damage in Glycine max L. leaves.Crossref | GoogleScholarGoogle Scholar |