Signalling via glutamate and GLRs in Arabidopsis thaliana
Matthias Weiland A C , Stefano Mancuso A and Frantisek Baluska BA Department of Plant, Soil and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy.
B Department of Plant Cell Biology, Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
C Corresponding author. Email: matthias.weiland@unifi.it
Functional Plant Biology 43(1) 1-25 https://doi.org/10.1071/FP15109
Submitted: 28 April 2015 Accepted: 14 October 2015 Published: 23 November 2015
Abstract
The genome of Arabidopsis thaliana (L. Heynh.) contains 20 coding sequences for homologues of animal ionotropic glutamate receptors. These glutamate receptor-like receptors act as sensors and mediators of a multitude of exogenous as well as endogenous signals and are found in all analysed plant species. Their molecular structure clearly indicates a function as integral membrane proteins with a ligand-gated ion channel activity. Altered gene expressions and the occurrence of mRNA splice variants confer a high flexibility on the gene as well as on the RNA level. An individual glutamate receptor of A. thaliana is able to bind two different ligands (most probable amino acids and their derivatives), whereas a functional receptor complex is likely to consist of four single proteins. These features enable an immense number of sensitivities against various local and temporal stimuli. This review encompasses the last 15 years of research concerning glutamate signalling and glutamate receptors in plants. It is aimed at summarising their major characteristics and involvements to obtain a broader and farer reaching perspective of these fundamental components of plant signal transduction.
Additional keywords: amino acid, calcium, electrophysiology, GLR, ion channel, signaling.
References
Acher FC, Bertrand H-O (2005) Amino acid recognition by Venus flytrap domains is encoded in an 8-residue motif. Biopolymers 80, 357–366.| Amino acid recognition by Venus flytrap domains is encoded in an 8-residue motif.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFersLc%3D&md5=79370b77d72b69f942caa2a993734294CAS | 15810013PubMed |
Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411, 1053–1057.
| A defined range of guard cell calcium oscillation parameters encodes stomatal movements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVCru7w%3D&md5=3808ec7a2cd21f1508eea3d9473d74baCAS | 11429606PubMed |
Angrand P-O, Segura I, Völkel P, Ghidelli S, Terry R, Brajenovic M, Vintersten K, Klein R, Superti-Furga G, Drewes G, Kuster B, Bouwmeester T, Acker-Palmer A (2006) Transgenic mouse proteomics identifies new 14-3-3-associated proteins involved in cytoskeletal rearrangements and cell signaling. Molecular & Cellular Proteomics 5, 2211–2227.
| Transgenic mouse proteomics identifies new 14-3-3-associated proteins involved in cytoskeletal rearrangements and cell signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCgu7%2FJ&md5=0bed0a1fb7f833db2c4672625fde98b0CAS |
Aouini A, Matsukura C, Ezura H, Asamizu E (2012) Characterisation of 13 glutamate receptor-like genes encoded in the tomato genome by structure, phylogeny and expression profiles. Gene 493, 36–43.
| Characterisation of 13 glutamate receptor-like genes encoded in the tomato genome by structure, phylogeny and expression profiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFOi&md5=64a33cbaae05b7faabad30c73518faa8CAS | 22143033PubMed |
Ayalon G, Stern-Bach Y (2001) Functional assembly of AMPA and kainate receptors is mediated by several discrete protein-protein interactions. Neuron 31, 103–113.
| Functional assembly of AMPA and kainate receptors is mediated by several discrete protein-protein interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFKks70%3D&md5=fb12eb9f31670172b6755034e02fd677CAS | 11498054PubMed |
Ayalon G, Segev E, Elgavish S, Stern-Bach Y (2005) Two regions in the N-terminal domain of ionotropic glutamate receptor 3 form the subunit oligomerization interfaces that control subtype-specific receptor assembly. Journal of Biological Chemistry 280, 15053–15060.
| Two regions in the N-terminal domain of ionotropic glutamate receptor 3 form the subunit oligomerization interfaces that control subtype-specific receptor assembly.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFSlsb0%3D&md5=3df665e95c7f8d76621f7fdf5ecb6c53CAS | 15703162PubMed |
Baluška F, Mancuso S, Volkmann D, Barlow P (2009) The ‘root-brain’ hypothesis of Charles and Francis Darwin: revival after more than 125 years. Plant Signaling & Behavior 4, 1121–1127.
| The ‘root-brain’ hypothesis of Charles and Francis Darwin: revival after more than 125 years.Crossref | GoogleScholarGoogle Scholar |
Boorer KJ, Frommer WB, Bush DR, Kreman M, Loo DD, Wright EM (1996) Kinetics and specificity of a H/amino acid transporter from Arabidopsis thaliana. Journal of Biological Chemistry 271, 2213–2220.
| Kinetics and specificity of a H/amino acid transporter from Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xns1Sjsw%3D%3D&md5=414377253ed77a91f39b084c00f5f46dCAS | 8567681PubMed |
Brady SM, Orlando DA, Lee J-Y, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318, 801–806.
| A high-resolution root spatiotemporal map reveals dominant expression patterns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1elsrfO&md5=1b6a9996fab1097a563407bdd5ab32dfCAS | 17975066PubMed |
Brenner ED, Martinez-Barboza N, Clark AP, Liang QS, Stevenson DW, Coruzzi GM (2000) Arabidopsis mutants resistant to S (+)-β-methyl-α, β-diaminopropionic acid, a cycad-derived glutamate receptor agonist. Plant Physiology 124, 1615–1624.
| Arabidopsis mutants resistant to S (+)-β-methyl-α, β-diaminopropionic acid, a cycad-derived glutamate receptor agonist.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitVWksw%3D%3D&md5=4390642ed9f2869c7b89cb22fcb0ea85CAS | 11115879PubMed |
Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluška F, Van Volkenburgh E (2006) Plant neurobiology: an integrated view of plant signaling. Trends in Plant Science 11, 413–419.
| Plant neurobiology: an integrated view of plant signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xns1Kjurc%3D&md5=6c3652afec1a76e6cf243fc25cf63224CAS | 16843034PubMed |
Brenner ED, Feinberg P, Runko S, Coruzzi GM (2009) A mutation in the proteosomal regulatory particle AAA-ATPase-3 in Arabidopsis impairs the light-specific hypocotyl elongation response elicited by a glutamate receptor agonist, BMAA. Plant Molecular Biology 70, 523–533.
| A mutation in the proteosomal regulatory particle AAA-ATPase-3 in Arabidopsis impairs the light-specific hypocotyl elongation response elicited by a glutamate receptor agonist, BMAA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt12nur8%3D&md5=75e164b484e4acf5c4f8671b642727d3CAS | 19412571PubMed |
Chang I-F, Curran A, Woolsey R, Quilici D, Cushman JC, Mittler R, Harmon A, Harper JF (2009) Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 9, 2967–2985.
| Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlGgt7c%3D&md5=9d7a598cb5d5caacae7b30deeaa90499CAS | 19452453PubMed |
Chen G-Q, Cui C, Mayer ML, Gouaux E (1999) Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–821.
| Functional characterization of a potassium-selective prokaryotic glutamate receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXpt1Gl&md5=9bfab4719d15c1102e7f8a08514613c5CAS | 10617203PubMed |
Cheong YH, Kim K-N, Pandey GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. The Plant Cell 15, 1833–1845.
| CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Wlsbw%3D&md5=c8b3c0c30165642191a83915d7f5f640CAS | 12897256PubMed |
Chiu J, DeSalle R, Lam H-M, Meisel L, Coruzzi G (1999) Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Molecular Biology and Evolution 16, 826–838.
| Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjslGitbY%3D&md5=e4bcfa7c09dbc2d066cf88928f267800CAS | 10368960PubMed |
Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM (2002) Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Molecular Biology and Evolution 19, 1066–1082.
| Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1aktrg%3D&md5=fef97b78403df3f9058c284f4990b7f4CAS | 12082126PubMed |
Cho D, Kim SA, Murata Y, Lee S, Jae S-K, Nam HG, Kwak JM (2009) De-regulated expression of the plant glutamate receptor homolog AtGLR3.1 impairs long-term Ca2+ -programmed stomatal closure. The Plant Journal 58, 437–449.
| De-regulated expression of the plant glutamate receptor homolog AtGLR3.1 impairs long-term Ca2+ -programmed stomatal closure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVGjur4%3D&md5=205df557a07e06419870a366b862dbfaCAS | 19143998PubMed |
Choi YB, Lipton SA (2000) Redox modulation of the NMDA receptor. Cellular and Molecular Life Sciences CMLS 57, 1535–1541.
| Redox modulation of the NMDA receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1Ghurw%3D&md5=616d72787d8013e407606f8cc348cfc8CAS | 11092448PubMed |
Coruzzi GM, Zhou L (2001) Carbon and nitrogen sensing and signaling in plants: emerging ‘matrix effects’. Current Opinion in Plant Biology 4, 247–253.
| Carbon and nitrogen sensing and signaling in plants: emerging ‘matrix effects’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFOksro%3D&md5=6e5630f2ba1c3e89de30cc91e873577cCAS | 11312136PubMed |
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annual Review of Plant Biology 61, 651–679.
| Abscisic acid: emergence of a core signaling network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslSjsbk%3D&md5=014d98c396390b1d05618790f020899fCAS | 20192755PubMed |
Davenport R (2002) Glutamate receptors in plants. Annals of Botany 90, 549–557.
| Glutamate receptors in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVynsrw%3D&md5=c57471af5174480158cee72c68167435CAS | 12466095PubMed |
Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiology 107, 315–321.
Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annual Review of Plant Biology 53, 67–107.
| Nonselective cation channels in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVWhtbw%3D&md5=d6909d9dd472aa8a27d9270fb9feb892CAS | 12221989PubMed |
Demidchik V, Essah PA, Tester M (2004) Glutamate activates cation currents in the plasma membrane of Arabidopsis root cells. Planta 219, 167–175.
| Glutamate activates cation currents in the plasma membrane of Arabidopsis root cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1eisb8%3D&md5=bdfdbf3d8cf4fde81281b3aa95d021c1CAS | 14767768PubMed |
Dennison KL, Spalding EP (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiology 124, 1511–1514.
| Glutamate-gated calcium fluxes in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitVWmuw%3D%3D&md5=a1a5055fbac44d7225c38d905c45a4faCAS | 11115867PubMed |
Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacological Reviews 51, 7–61.
Dubos C, Huggins D, Grant GH, Knight MR, Campbell MM (2003) A role for glycine in the gating of plant NMDA-like receptors. The Plant Journal 35, 800–810.
| A role for glycine in the gating of plant NMDA-like receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Oqurc%3D&md5=cb2689c305dcdfa1dc03f8ff85ce9204CAS | 12969432PubMed |
Dubos C, Willment J, Huggins D, Grant GH, Campbell MM (2005) Kanamycin reveals the role played by glutamate receptors in shaping plant resource allocation: unexpected role of kanamycin in plants. The Plant Journal 43, 348–355.
| Kanamycin reveals the role played by glutamate receptors in shaping plant resource allocation: unexpected role of kanamycin in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnsVCjtbY%3D&md5=a17737344a5d79395195d41f9f91cb9cCAS | 16045471PubMed |
Felder CB, Graul RC, Lee AY, Merkle H-P, Sadee W (1999) The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. AAPS PharmSci 1, 7–26.
| The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors.Crossref | GoogleScholarGoogle Scholar |
Felle HH, Zimmermann MR (2007) Systemic signalling in barley through action potentials. Planta 226, 203–214.
| Systemic signalling in barley through action potentials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlSrsbw%3D&md5=d3c68d9faa144fba463789a08b66b2b3CAS | 17226028PubMed |
Forde BG, Cutler SR, Zaman N, Krysan PJ (2013) Glutamate signalling via a MEKK1 kinase-dependent pathway induces changes in Arabidopsis root architecture. The Plant Journal 75, 1–10.
| Glutamate signalling via a MEKK1 kinase-dependent pathway induces changes in Arabidopsis root architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1Cis78%3D&md5=fc70bb7df09d850043830253e1ee6b5fCAS | 23574009PubMed |
Fu H, Subramanian RR, Masters SC (2000) 14-3-3 proteins: structure, function, and regulation. Annual Review of Pharmacology and Toxicology 40, 617–647.
| 14-3-3 proteins: structure, function, and regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1yht7c%3D&md5=19abc8606c4538a0f805f814d1cdd9acCAS | 10836149PubMed |
Furukawa H, Gouaux E (2003) Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO Journal 22, 2873–2885.
| Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Wqsrk%3D&md5=7d09a4a89a507251fab78f10e0fe39f8CAS | 12805203PubMed |
Gilliham M, Campbell M, Dubos C, Becker D, Davenport R (2006) The Arabidopsis thaliana glutamate-like receptor family (AtGLR). In ‘Communication in plants’. (Eds F Baluška, S Mancuso, D Volkmann) pp. 187–204. (Springer: Berlin, Heidelberg).
Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Advances in Bioinformatics 2008, 420747
| Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes.Crossref | GoogleScholarGoogle Scholar | 19956698PubMed |
Ikonomidou C, Turski L (1996) Neurodegenerative disorders: clues from glutamate and energy metabolism. Critical Reviews in Neurobiology 10, 239–263.
| Neurodegenerative disorders: clues from glutamate and energy metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksl2isA%3D%3D&md5=c667467af512ceb67b06f97ec3b30f5cCAS | 8971131PubMed |
Jia W, Zhang J (2008) Stomatal movements and long-distance signaling in plants. Plant Signaling & Behavior 3, 772–777.
| Stomatal movements and long-distance signaling in plants.Crossref | GoogleScholarGoogle Scholar |
Jones JDG, Dangl JL (2006) The plant immune system. Nature 444, 323–329.
| The plant immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SgtbzO&md5=d47653598b0e63883374f76c0be21a8bCAS |
Kang J, Turano FJ (2003) The putative glutamate receptor 1.1 (AtGLR1. 1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 100, 6872–6877.
| The putative glutamate receptor 1.1 (AtGLR1. 1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlygt74%3D&md5=4a401220642459f124e72aefad2769e3CAS | 12738881PubMed |
Kang J, Mehta S, Turano FJ (2004) The putative glutamate receptor 1.1 (AtGLR1. 1) in Arabidopsis thaliana regulates abscisic acid biosynthesis and signaling to control development and water loss. Plant & Cell Physiology 45, 1380–1389.
| The putative glutamate receptor 1.1 (AtGLR1. 1) in Arabidopsis thaliana regulates abscisic acid biosynthesis and signaling to control development and water loss.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSisrrP&md5=37647670be872efb033b34e92caa4a30CAS |
Kang S, Kim HB, Lee H, Choi JY, Heu S, Oh CJ, Kwon SI, An CS (2006) Overexpression in Arabidopsis of a plasma membrane-targeting glutamate receptor from small radish increases glutamate-mediated Ca2+ influx and delays fungal infection. Molecules and Cells 21, 418
Kato A, Rouach N, Nicoll RA, Bredt DS (2005) Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proceedings of the National Academy of Sciences of the United States of America 102, 5600–5605.
| Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslaqtL4%3D&md5=c309c3086593a75b085893af65825404CAS | 15809437PubMed |
Kim SA, Kwak J, Jae S-K, Wang M-H, Nam H (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant & Cell Physiology 42, 74–84.
| Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1Cntw%3D%3D&md5=2ceec1c58b60f70c0060bdebb8591badCAS |
Kong D, Ju C, Parihar A, Kim S, Cho D, Kwak JM (2015) Arabidopsis glutamate receptor homolog3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination. Plant Physiology 167, 1630–1642.
| Arabidopsis glutamate receptor homolog3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlvVKktr4%3D&md5=fd165051aa11c671335ade8d0560c0cdCAS | 25681329PubMed |
Krol E, Dziubinska H, Trebacz K, Koselski M, Stolarz M (2007) The influence of glutamic and aminoacetic acids on the excitability of the liverwort Conocephalum conicum. Journal of Plant Physiology 164, 773–784.
| The influence of glutamic and aminoacetic acids on the excitability of the liverwort Conocephalum conicum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFWqurw%3D&md5=388c85fdc5770995dae700626b10e281CAS | 16891034PubMed |
Kwaaitaal M, Huisman R, Maintz J, Reinstädler A, Panstruga R (2011) Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana. The Biochemical Journal 440, 355–373.
| Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFeqs7zJ&md5=18ef4338bc001948f72a891453993b0eCAS | 21848515PubMed |
Lacombe B (2001) The identity of plant glutamate receptors. Science 292, 1486–1487.
| The identity of plant glutamate receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktV2jsb4%3D&md5=343bdc25562b82ba1d2d7c2bb62a935fCAS | 11379626PubMed |
Lam H-M, Chiu J, Hsieh M-H, Meisel L, Oliveira IC, Shin M, Coruzzi G (1998) Glutamate-receptor genes in plants. Nature 396, 125–126.
| Glutamate-receptor genes in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslantLY%3D&md5=c8a7315d39dfb1a36733a6f4f97d67feCAS | 9823891PubMed |
Li J, Zhu S, Song X, Shen Y, Chen H, Yu J, Yi K, Liu Y, Karplus VJ, Wu P, Deng XW (2006) A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem. The Plant Cell 18, 340–349.
| A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1egu7o%3D&md5=77d7936e0fa0762011799d9a53f431fdCAS | 16377757PubMed |
Li F, Wang J, Ma C, Zhao Y, Wang Y, Hasi A, Qi Z (2013a) Glutamate receptor-like channel3.3 is involved in mediating glutathione-triggered cytosolic calcium transients, transcriptional changes, and innate immunity responses in Arabidopsis. Plant Physiology 162, 1497–1509.
| Glutamate receptor-like channel3.3 is involved in mediating glutathione-triggered cytosolic calcium transients, transcriptional changes, and innate immunity responses in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCmtLnF&md5=02c1c5f1eeee190cd19127950719cc76CAS | 23656893PubMed |
Li G, Wu S, Cai L, Wang Q, Zhao X, Wu C (2013b) Identification and mRNA expression profile of glutamate receptor-like gene in quinclorac-resistant and susceptible Echinochloa crus-galli. Gene 531, 489–495.
| Identification and mRNA expression profile of glutamate receptor-like gene in quinclorac-resistant and susceptible Echinochloa crus-galli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFentbrI&md5=ff2b117644f22159c712416b082d0829CAS | 24036427PubMed |
Lu G, Wang X, Liu J, Yu K, Gao Y, Liu H, Wang C, Wang W, Wang G, Liu M, Mao G, Li B, Qin J, Xia M, Zhou J, Liu J, Jiang S, Mo H, Cui J, Nagasawa N, Sivasankar S, Albertsen MC, Sakai H, Mazur BJ, Lassner MW, Broglie RM (2014) Application of T-DNA activation tagging to identify glutamate receptor-like genes that enhance drought tolerance in plants. Plant Cell Reports 33, 617–631.
| Application of T-DNA activation tagging to identify glutamate receptor-like genes that enhance drought tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltlejtLg%3D&md5=966c1eb7cf1302dc445ee04c6162a42eCAS | 24682459PubMed |
Mah SJ (2005) Glutamate receptor trafficking: endoplasmic reticulum quality control involves ligand binding and receptor function. Journal of Neuroscience 25, 2215–2225.
| Glutamate receptor trafficking: endoplasmic reticulum quality control involves ligand binding and receptor function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVOmtrY%3D&md5=2666efa5ec030e5c4da756ae059a02f0CAS | 15745947PubMed |
Manzoor H, Kelloniemi J, Chiltz A, Wendehenne D, Pugin A, Poinssot B, Garcia-Brugger A (2013) Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance to Hyaloperonospora arabidopsidis. The Plant Journal 76, 466–480.
| Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance to Hyaloperonospora arabidopsidis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WntLfJ&md5=f2ad7697338cb4302bfd9b3bcea444aeCAS | 23952652PubMed |
Maren S, Baudry M (1995) Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory. Neurobiology of Learning and Memory 63, 1–18.
| Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2Mzpt12nsQ%3D%3D&md5=dfbe5908fdc8af45c0e8523017c24a04CAS | 7663875PubMed |
Meyerhoff O, Müller K, Roelfsema MRG, Latz A, Lacombe B, Hedrich R, Dietrich P, Becker D (2005) AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold. Planta 222, 418–427.
| AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWmt7jF&md5=0773b280b4115090c9c592a51b111822CAS | 15864638PubMed |
Michard E, Lima PT, Borges F, Silva AC, Portes MT, Carvalho JE, Gilliham M, Liu L-H, Obermeyer G, Feijo JA (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332, 434–437.
| Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVals74%3D&md5=3e9b2adf77cc7fe8c12ac18501082b84CAS | 21415319PubMed |
Miller ND, Durham Brooks TL, Assadi AH, Spalding EP (2010) Detection of a gravitropism phenotype in glutamate receptor-like 3.3 mutants of Arabidopsis thaliana using machine vision and computation. Genetics 186, 585–593.
| Detection of a gravitropism phenotype in glutamate receptor-like 3.3 mutants of Arabidopsis thaliana using machine vision and computation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOnt7vP&md5=ab74c11d322f8f5d210e979391f97d95CAS | 20647506PubMed |
Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) Glutamate receptor-like genes mediate leaf-to-leaf wound signalling. Nature 500, 422–426.
| Glutamate receptor-like genes mediate leaf-to-leaf wound signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlWjtrbJ&md5=23d22e6dbbf817027723b571e412df4bCAS |
Nagata T (2004) Comparative analysis of plant and animal calcium signal transduction element using plant full-length cDNA data. Molecular Biology and Evolution 21, 1855–1870.
| Comparative analysis of plant and animal calcium signal transduction element using plant full-length cDNA data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFeju74%3D&md5=06f8e860c12376a6f3ada4fbfbf663d9CAS | 15215322PubMed |
Omasits U, Ahrens CH, Müller S, Wollscheid B (2014) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30, 884–886.
| Protter: interactive protein feature visualization and integration with experimental proteomic data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12jsLs%3D&md5=8944636442f85ddedea13ab0679f9a9cCAS | 24162465PubMed |
Paas Y (1998) The macro-and microarchitectures of the ligand-binding domain of glutamate receptors. Trends in Neurosciences 21, 117–125.
| The macro-and microarchitectures of the ligand-binding domain of glutamate receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1Cksb4%3D&md5=58941662f54d5c41d8a7064837614e1fCAS | 9530919PubMed |
Penn AC, Williams SR, Greger IH (2008) Gating motions underlie AMPA receptor secretion from the endoplasmic reticulum. EMBO Journal 27, 3056–3068.
| Gating motions underlie AMPA receptor secretion from the endoplasmic reticulum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2gsLnI&md5=abcf9509e7c6158284ed4852f450c465CAS | 18923416PubMed |
Pina C, Pinto F, Feijo FA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiology 138, 744–756.
| Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVaqu7Y%3D&md5=1447ad7dc98ff0e11fe844a8684f4414CAS | 15908605PubMed |
Price MB, Okumoto S (2013) Inter-subunit interactions between glutamate-like receptors in Arabidopsis. Plant Signaling & Behavior 8, e27034
| Inter-subunit interactions between glutamate-like receptors in Arabidopsis.Crossref | GoogleScholarGoogle Scholar |
Price MB, Jelesko J, Okumoto S (2012) Glutamate receptor homologs in plants: functions and evolutionary origins. Frontiers in Plant Science 3, 235
| Glutamate receptor homologs in plants: functions and evolutionary origins.Crossref | GoogleScholarGoogle Scholar | 23115559PubMed |
Prickett TD, Samuels Y (2012) Molecular pathways: dysregulated glutamatergic signaling pathways in cancer. Clinical Cancer Research 18, 4240–4246.
| Molecular pathways: dysregulated glutamatergic signaling pathways in cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ajs7bP&md5=243601c64e46f56a46d40851825f1ef2CAS | 22648273PubMed |
Qi Z, Stephens NR, Spalding EP (2006) Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiology 142, 963–971.
| Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ejurbK&md5=d07308ea65db2077bfbc52b206eba85bCAS | 17012403PubMed |
Rai M, Padh H (2001) Expression systems for production of heterologous proteins. Current Science-Bangalore 80, 1121–1128.
Rameau GA, Akaneya Y, Chiu L, Ziff EB (2000) Role of NMDA receptor functional domains in excitatory cell death. Neuropharmacology 39, 2255–2266.
| Role of NMDA receptor functional domains in excitatory cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtF2it7s%3D&md5=43c7b418b95f2fafd92645cb93e6526aCAS | 10974309PubMed |
Ribeiro FM, Paquet M, Cregan PS, Ferguson SGS (2010) Group I metabotropic glutamate receptor signalling and its implication in neurological disease. CNS & Neurological Disorders – Drug Targets 9, 574–595.
| Group I metabotropic glutamate receptor signalling and its implication in neurological disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSrsrnP&md5=67aac0ccc02aa6f94070ae840501d635CAS |
Roy SJ, Gilliham M, Berger B, Essah PA, Cheffings C, Miller AJ, Davenport RJ, Liu L-H, Skynner MJ, Davies JM, Richardson P, Leigh RA, Tester M (2008) Investigating glutamate receptor-like gene co-expression in Arabidopsis thaliana. Plant, Cell & Environment 31, 861–871.
| Investigating glutamate receptor-like gene co-expression in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVOmurk%3D&md5=0e72eebcba7a558c586d54fc52e325cdCAS |
Salinas GD, Blair LAC, Needleman LA, Gonzales JD, Chen Y, Li M, Singer JD, Marshall J (2006) Actinfilin is a Cul3 substrate adaptor, linking GluR6 kainate receptor subunits to the ubiquitin-proteasome pathway. Journal of Biological Chemistry 281, 40164–40173.
| Actinfilin is a Cul3 substrate adaptor, linking GluR6 kainate receptor subunits to the ubiquitin-proteasome pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCrt7zM&md5=10ef769530be3aa8c8bd04356e3c54a3CAS | 17062563PubMed |
Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends in Biochemical Sciences 20, 374–376.
| RASMOL: biomolecular graphics for all.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotF2rsLg%3D&md5=e5cbe98b6112f95d34dc963134f72b50CAS | 7482707PubMed |
Singh A, Kanwar P, Yadav AK, Mishra M, Jha SK, Baranwal V, Pandey A, Kapoor S, Tyagi AK, Pandey GK (2014) Genome-wide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice. FEBS Journal 281, 894–915.
| Genome-wide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Onur4%3D&md5=09520771609895c7f034f7acfa954290CAS | 24286292PubMed |
Sivaguru M, Pike S, Gassmann W, Baskin TI (2003) Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. Plant & Cell Physiology 44, 667–675.
| Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslGmurw%3D&md5=b60e7db980bc297a8e9aa6da5f6476eaCAS |
Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756.
| X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVylsb7N&md5=2f34b26ca3d560043cc94e6bfe2b9aedCAS | 19946266PubMed |
Standley S, Baudry M (2000) The role of glycosylation in ionotropic glutamate receptor ligand binding, function, and trafficking. Cellular and Molecular Life Sciences CMLS 57, 1508–1516.
| The role of glycosylation in ionotropic glutamate receptor ligand binding, function, and trafficking.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1Ghtbc%3D&md5=665511d4171387a858e11d4fdf424693CAS | 11092445PubMed |
Stephens NR, Qi Z, Spalding EP (2008) Glutamate receptor subtypes evidenced by differences in desensitization and dependence on the GLR3.3 and GLR3.4 genes. Plant Physiology 146, 529–538.
| Glutamate receptor subtypes evidenced by differences in desensitization and dependence on the GLR3.3 and GLR3.4 genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFCmt7g%3D&md5=eccadaf37b2ac0e9f2a7d1d61f2acf07CAS | 18162597PubMed |
Tammaro P, Shimomura K, Proks P (2009) Xenopus oocytes as a heterologous expression system for studying ion channels with the patch-clamp technique. Methods in Molecular Biology 491, 127–139.
| Xenopus oocytes as a heterologous expression system for studying ion channels with the patch-clamp technique.Crossref | GoogleScholarGoogle Scholar |
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
| MEGA6: molecular evolutionary genetics analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=32fec2eb12630ba036b40e2dd9a56c13CAS | 24132122PubMed |
Tapken D, Hollmann M (2008) Arabidopsis thaliana glutamate receptor ion channel function demonstrated by ion pore transplantation. Journal of Molecular Biology 383, 36–48.
| Arabidopsis thaliana glutamate receptor ion channel function demonstrated by ion pore transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFeksbfF&md5=ed6b966d91014d28f01e91f12f105857CAS | 18625242PubMed |
Tapken D, Anschütz U, Liu L-H, Huelsken T, Seebohm G, Becker D, Hollmann M (2013) A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids. Science Signaling 6, ra47
| A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids.Crossref | GoogleScholarGoogle Scholar | 23757024PubMed |
Teardo E, Segalla A, Formentin E, Zanetti M, Marin O, Giacometti GM, Lo Schiavo F, Zoratti M, Szabò I (2010) Characterization of a plant glutamate receptor activity. Cellular Physiology and Biochemistry 26, 253
| Characterization of a plant glutamate receptor activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyhurrN&md5=0e871c1bfc228559f75fe09d28c4b1d4CAS | 20798509PubMed |
Teardo E, Formentin E, Segalla A, Giacometti GM, Marin O, Zanetti M, Lo Schiavo F, Zoratti M, Szabò I (2011) Dual localization of plant glutamate receptor AtGLR3.4 to plastids and plasmamembrane. Biochimica et Biophysica Acta (BBA). Bioenergetics 1807, 359–367.
| Dual localization of plant glutamate receptor AtGLR3.4 to plastids and plasmamembrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFygu7g%3D&md5=8cdcdaef0fc30ca454af7a5ebf7f3e73CAS |
Teardo E, Carraretto L, De Bortoli S, Costa A, Behera S, Wagner R, Lo Schiavo F, Formentin E, Szabo I (2015) Alternative splicing-mediated targeting of the Arabidopsis glutamate receptor3.5 to mitochondria affects organelle morphology. Plant Physiology 167, 216–227.
| Alternative splicing-mediated targeting of the Arabidopsis glutamate receptor3.5 to mitochondria affects organelle morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1WlsL0%3D&md5=d49451ec31e9482fe0cda186349d4cfcCAS | 25367859PubMed |
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation and function. Pharmacological Reviews 62, 405–496.
| Glutamate receptor ion channels: structure, regulation and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSltbbJ&md5=f247c4e49949bcaa581c42987082af16CAS | 20716669PubMed |
Turano FJ, Panta GR, Allard MW, van Berkum P (2001) The putative glutamate receptors from plants are related to two superfamilies of animal neurotransmitter receptors via distinct evolutionary mechanisms. Molecular Biology and Evolution 18, 1417–1420.
| The putative glutamate receptors from plants are related to two superfamilies of animal neurotransmitter receptors via distinct evolutionary mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVGqsr0%3D&md5=a54709b7fbe1cc830b2f8930bbad064fCAS | 11420380PubMed |
Turano FJ, Muhitch MJ, Felker FC, McMahon MB (2002) The putative glutamate receptor 3.2 from Arabidopsis thaliana (AtGLR3. 2) is an integral membrane peptide that accumulates in rapidly growing tissues and persists in vascular-associated tissues. Plant Science 163, 43–51.
| The putative glutamate receptor 3.2 from Arabidopsis thaliana (AtGLR3. 2) is an integral membrane peptide that accumulates in rapidly growing tissues and persists in vascular-associated tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVOkur8%3D&md5=4f6b04b4df394f736bac932f236c387cCAS |
Ulbrich MH, Isacoff EY (2008) Rules of engagement for NMDA receptor subunits. Proceedings of the National Academy of Sciences of the United States of America 105, 14163–14168.
| Rules of engagement for NMDA receptor subunits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFGqtL7E&md5=57923d913f274000e5564e762d08c073CAS | 18779583PubMed |
Varghese A, Tenbroek E, Colesjr J, Sigg D (2006) Endogenous channels in HEK cells and potential roles in HCN ionic current measurements. Progress in Biophysics and Molecular Biology 90, 26–37.
| Endogenous channels in HEK cells and potential roles in HCN ionic current measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1OlsrvO&md5=54a23a0a8e0244071160cd6a1af806a9CAS | 15979128PubMed |
Vatsa P, Chiltz A, Bourque S, Wendehenne D, Garcia-Brugger A, Pugin A (2011) Involvement of putative glutamate receptors in plant defence signaling and NO production. Biochimie 93, 2095–2101.
| Involvement of putative glutamate receptors in plant defence signaling and NO production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOjsrjJ&md5=ead8350cfccb18a236afcd11aee10cd0CAS | 21524679PubMed |
Vincill ED, Bieck AM, Spalding EP (2012) Ca2+ conduction by an amino acid-gated ion channel related to glutamate receptors. Plant Physiology 159, 40–46.
| Ca2+ conduction by an amino acid-gated ion channel related to glutamate receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntV2hu7s%3D&md5=ec10a29a554e86e61e64a7159d0caf00CAS | 22447719PubMed |
Vincill ED, Clarin AE, Molenda JN, Spalding EP (2013) Interacting glutamate receptor-like proteins in phloem regulate lateral root initiation in Arabidopsis. The Plant Cell 25, 1304–1313.
| Interacting glutamate receptor-like proteins in phloem regulate lateral root initiation in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVaqu78%3D&md5=13ab5bb257a493e552e321d82d0ae837CAS | 23590882PubMed |
Walch-Liu P, Liu L-H, Remans T, Tester M, Forde BG (2006) Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant & Cell Physiology 47, 1045–1057.
| Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar |
Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14.
| Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovV2ltbo%3D&md5=3d485d37078f4062ef6d23149b462eb1CAS | 14513379PubMed |
Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S (2010) Protein-binding assays in biological liquids using microscale thermophoresis. Nature Communications 1, 100
| Protein-binding assays in biological liquids using microscale thermophoresis.Crossref | GoogleScholarGoogle Scholar | 20981028PubMed |
Williamson BL, Marchese J, Morrice NA (2006) Automated identification and quantification of protein phosphorylation sites by LC/MS on a hybrid triple quadrupole linear ion trap mass spectrometer. Molecular & Cellular Proteomics 5, 337–346.
| Automated identification and quantification of protein phosphorylation sites by LC/MS on a hybrid triple quadrupole linear ion trap mass spectrometer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVagsb8%3D&md5=b548a9605d0df0f0b5107256e2dab5e0CAS |
Winter D Vinegar B Nahal H Ammar R Wilson GV Provart NJ 2007
Galen Wo ZG, Oswald RE (1995) Unraveling the modular design of glutamate-gated ion channels. Trends in Neurosciences 18, 161–168.
| Unraveling the modular design of glutamate-gated ion channels.Crossref | GoogleScholarGoogle Scholar |