Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Cryptic crassulacean acid metabolism (CAM) in Jatropha curcas

Klaus Winter A C and Joseph A. M. Holtum A B
+ Author Affiliations
- Author Affiliations

A Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama.

B Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Qld 4811, Australia.

C Corresponding author. Email: winterk@si.edu

Functional Plant Biology 42(8) 711-717 https://doi.org/10.1071/FP15021
Submitted: 30 January 2015  Accepted: 13 April 2015   Published: 25 May 2015

Abstract

Jatropha curcas L. is a drought-tolerant shrub or small tree that is a candidate bioenergy feedstock. It is a member of the family Euphorbiaceae in which both CAM and C4 photosynthesis have evolved. Here, we report that J. curcas exhibits features diagnostic of low-level CAM. Small increases in nocturnal acid content were consistently observed in photosynthetic stems and occasionally in leaves. Acidification was associated with transient contractions in CO2 loss at night rather than with net CO2 dark fixation. Although the CAM-type nocturnal CO2 uptake signal was masked by background respiration, estimates of dark CO2 fixation based upon the 2 : 1 stoichiometric relationship between H+ accumulated and CO2 fixed indicated substantial carbon retention in the stems via the CAM cycle. It is proposed that under conditions of drought, low-level CAM in J. curcas stems serves primarily to conserve carbon rather than water.

Additional keywords: biofuel, Euphorbiaceae, photosynthesis, stem respiration.


References

Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology 99, 1716–1721.
Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVGktA%3D%3D&md5=39b2c22715ee9f117ee6bc1336f4b878CAS | 17531473PubMed |

Borland AM, Hartwell J, Weston DJ, Schlauch KA, Tschaplinski TJ, Tuskan GA, Yang X, Cushman JC (2014) Engineering crassulacean acid metabolism to improve water-use efficiency. Trends in Plant Science 19, 327–338.
Engineering crassulacean acid metabolism to improve water-use efficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivFCmsb4%3D&md5=32ed9404e2b3dc04d45a02ac273f535fCAS | 24559590PubMed |

Borland AM, Wullschleger SD, Weston DJ, Hartwell J, Tuskan GA, Yang X, Cushman JC (2015) Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy. Plant, Cell & Environment
Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.Crossref | GoogleScholarGoogle Scholar |

DePaoli HC, Borland AM, Tuskan GA, Cushman JC, Yang X (2014) Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities. Journal of Experimental Botany 65, 3381–3393.
Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFCrurnN&md5=bee432904628977205fad4030ebd318aCAS | 24567493PubMed |

Evans M, Aubriot X, Hearn D, Lanciaux M, Lavergne S, Cruaud C, Lowry PP, Haevermans T (2014) Insights on the evolution of plant succulence from a remarkable radiation in Madagascar (Euphorbia). Systematic Biology 63, 698–711.
Insights on the evolution of plant succulence from a remarkable radiation in Madagascar (Euphorbia).Crossref | GoogleScholarGoogle Scholar |

Gupta RC (1985) Pharmacognostic studies on ‘Dravanti’ part-I Jatropha curcas Linn. Proceedings of the Indian Academy of Sciences Plant Sciences 94, 65–82.
Pharmacognostic studies on ‘Dravanti’ part-I Jatropha curcas Linn.Crossref | GoogleScholarGoogle Scholar |

Harris FS, Martin CE (1991) Plasticity in the degree of CAM-cycling and its relationship to drought stress in five species of Talinum (Portulacaceae). Oecologia 86, 575–584.
Plasticity in the degree of CAM-cycling and its relationship to drought stress in five species of Talinum (Portulacaceae).Crossref | GoogleScholarGoogle Scholar |

Hastilestari BR, Mudersbach M, Tomala F, Vogt H, Biskupek-Korell B, Van Damme P, Guretzki S, Papenbrock J (2013) Euphorbia tirucalli L. – Comprehensive characterization of a drought tolerant plant with a potential as biofuel source. PLOS ONE 8, e63501
Euphorbia tirucalli L. – Comprehensive characterization of a drought tolerant plant with a potential as biofuel source.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXns1OktLs%3D&md5=536795400ce5fe6adb1c8ac361ad2aaaCAS | 23658836PubMed |

Herrera A (2009) Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for? Annals of Botany 103, 645–653.
Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVGmsrw%3D&md5=40187e7cd2190f9d89f8299791549c8bCAS | 18708641PubMed |

Holtum JAM, Winter K (1999) Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns. Australian Journal of Plant Physiology 26, 749–757.
Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1Ogtw%3D%3D&md5=815933626aa0830a42d3fe3b6a783559CAS |

Horn JW, Xi Z, Riina R, Peirson JA, Yang Y, Dorsey BL, Berry PE, Davis CC, Wurdack KJ (2014) Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway. Evolution 68, 3485–3504.
Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVCjurjN&md5=ce0ba4cd6a7e154c8a445219188f0060CAS | 25302554PubMed |

Jongschaap REE, Blesgraaf RAR, Bogaard TA, van Loo EN, Savenije HHG (2009) The water footprint of bioenergy from Jatropha curcas L. Proceedings of the National Academy of Sciences of the United States of America 106, E92
The water footprint of bioenergy from Jatropha curcas L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGntr7E&md5=6fd4259a3ac6bb5dbc60bc2f22e11eb5CAS |

Lange OL, Zuber M (1977) Frerea indica, a stem succulent CAM plant with deciduous C3 leaves. Oecologia 31, 67–72.
Frerea indica, a stem succulent CAM plant with deciduous C3 leaves.Crossref | GoogleScholarGoogle Scholar |

Maes WH, Achten WMJ, Reubens B, Raes D, Samson R, Muys B (2009a) Plant-water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. Journal of Arid Environments 73, 877–884.
Plant-water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress.Crossref | GoogleScholarGoogle Scholar |

Maes WH, Trabucco A, Achten WMJ, Muys AB (2009b) Climatic growing conditions of Jatropha curcas L. Biomass and Bioenergy 33, 1481–1485.
Climatic growing conditions of Jatropha curcas L.Crossref | GoogleScholarGoogle Scholar |

McWilliams EL (1970) Comparative rates of dark CO2 uptake and acidification in the Bromeliaceae, Orchidaceae, and Euphorbiaceae. Botanical Gazette 131, 285–290.
Comparative rates of dark CO2 uptake and acidification in the Bromeliaceae, Orchidaceae, and Euphorbiaceae.Crossref | GoogleScholarGoogle Scholar |

Neales TF, Patterson AA, Hartney VJ (1968) Physiological adaptation to drought in the carbon assimilation and water loss of xerophytes. Nature 219, 469–472.
Physiological adaptation to drought in the carbon assimilation and water loss of xerophytes.Crossref | GoogleScholarGoogle Scholar |

Nobel PS (1988) ‘Environmental biology of agaves and cacti.’ (Cambridge University Press: Cambridge)

Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annual Review of Plant Physiology 29, 379–414.
Crassulacean acid metabolism: a curiosity in context.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXktl2gt7c%3D&md5=07ec773b5b20a29fff6364069a65a852CAS |

Pearcy RW, Troughton J (1975) C4 photosynthesis in tree form Euphorbia species from Hawaiian rainforest sites. Plant Physiology 55, 1054–1056.
C4 photosynthesis in tree form Euphorbia species from Hawaiian rainforest sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXksVSgtL8%3D&md5=19b9adfa5191e7a1a5b0fe5a32ff7886CAS | 16659208PubMed |

Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena JA, Wada N, Kohinata T, Atefeh A, Yuasa S, Matsunaga S, Fukui K (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Research 18, 65–76.
Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1WgsLk%3D&md5=ec2214659dac00b29fcf35b18100e8c5CAS | 21149391PubMed |

Silvera K, Santiago LS, Winter K (2005) Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes. Functional Plant Biology 32, 397–407.
Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1ehsrw%3D&md5=fb13978479c15f433d6af0f3b6512447CAS |

Silvera K, Winter K, Rodriguez BL, Albion RL, Cushman JC (2014) Multiple isoforms of phosphoenolpyruvate carboxylase (ppc) in the Orchidaceae (subtribe Oncidiinae): implications for the evolution of crassulacean acid metabolism. Journal of Experimental Botany 65, 3623–3636.
Multiple isoforms of phosphoenolpyruvate carboxylase (ppc) in the Orchidaceae (subtribe Oncidiinae): implications for the evolution of crassulacean acid metabolism.Crossref | GoogleScholarGoogle Scholar | 24913627PubMed |

Smith JAC, Winter K (1996) Taxonomic distribution of crassulacean acid metabolism. In ‘Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution’. (Eds K Winter, JAC Smith) pp. 427–436. (Springer-Verlag: Berlin)

The Plant List (2013) Version 1.1. Available at http://www.theplantlist.org/ [Verified 23 January 2015].

Tokuoka T (2007) Molecular phylogenetic analysis of Euphorbiaceae sensu stricto based on plastid and nuclear DNA sequences and ovule and seed character evolution. Journal of Plant Research 120, 511–522.
Molecular phylogenetic analysis of Euphorbiaceae sensu stricto based on plastid and nuclear DNA sequences and ovule and seed character evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntFOgurY%3D&md5=61746e63d8ee91ca6583f859cd8bd24cCAS | 17530165PubMed |

van Eijck J, Romijn H, Balkema A, Faaij A (2014) Global experience with jatropha cultivation for bioenergy: an assessment of socio-economic and environmental aspects. Renewable & Sustainable Energy Reviews 32, 869–889.
Global experience with jatropha cultivation for bioenergy: an assessment of socio-economic and environmental aspects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktVWnsbw%3D&md5=d5a133d98bd1fadaf875a3b73f2ff2f2CAS |

Winter K, Holtum JAM (2008) On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë, and Opuntia. Journal of Experimental Botany 59, 1829–1840.
On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë, and Opuntia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtleltrs%3D&md5=527b622cc005156de36d9b40911d8c61CAS | 18440928PubMed |

Winter K, Holtum JAM (2014) Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. Journal of Experimental Botany 65, 3425–3441.
Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis.Crossref | GoogleScholarGoogle Scholar | 24642847PubMed |

Winter K, von Willert DJ (1972) NaCl-induzierter Crassulaceensäure-stoffwechsel bei Mesembryanthemum crystallinum. Zeitschrift für Pflanzenphysiologie 67, 166–170.
NaCl-induzierter Crassulaceensäure-stoffwechsel bei Mesembryanthemum crystallinum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XksFyqs7c%3D&md5=71fd9a24f7f5c5419c0e510ba2f6293eCAS |

Winter K, Aranda J, Holtum JAM (2005) Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism. Functional Plant Biology 32, 381–388.
Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1ehsr0%3D&md5=98e56ea256d58d70fe1abc5810ee7675CAS |

Winter K, Holtum JAM, Smith JAC (2015) Crassulacean acid metabolism: a continuous of discrete trait? New Phytologist
Crassulacean acid metabolism: a continuous of discrete trait?Crossref | GoogleScholarGoogle Scholar | 25975197PubMed |

Wurdack KJ, Hoffmann P, Chase MW (2005) Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid rbcL and trnL-F DNA sequences. American Journal of Botany 92, 1397–1420.
Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid rbcL and trnL-F DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVahur%2FF&md5=1e57356d5efb69b0c572d0e89dfe7c46CAS | 21646159PubMed |

Yang Y, Berry PE (2011) Phylogenetics of the Chamaesyce clade (Euphorbia, Euphorbiaceae): reticulate evolution and long-distance dispersal in a prominent C4 lineage. American Journal of Botany 98, 1486–1503.
Phylogenetics of the Chamaesyce clade (Euphorbia, Euphorbiaceae): reticulate evolution and long-distance dispersal in a prominent C4 lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSks73O&md5=894a64e18490c929da9b434063b3c5bfCAS | 21875975PubMed |

Yang X, Cushman JC, Borland AM, Edwards EJ, Wullschleger SD, Tuskan GA, Owen NA, Griffiths H, Smith JAC, De Paoli HC, Weston DJ, Cottingham R, Hartwell J, Davis SC, Silvera K, Ming R, Schlauch K, Abraham P, Stewart JR, Guo H-B, Albion R, Ha J, Lim SD, Wone BWM, Yim WC, Garcia T, Mayer JA, Petereit J, Nair SS, Casey E, Hettich RL, Ceusters J, Ranjan P, Palla KJ, Yin H, Reyes-García C, Andrade JL, Freschi L, Beltrán JD, Dever LV, Boxall SF, Waller J, Davies J, Bupphada P, Kadu N, Winter K, Sage RF, Aguilar CN, Schmutz J, Jenkins J, Holtum JAM (2015) A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytologist
A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world.Crossref | GoogleScholarGoogle Scholar |

Yin H, Chen CJ, Yang J, Weston DJ, Chen J-G, Muchero W, Ye N, Tschaplinski TJ, Wullschleger SD, Cheng Z-M, Tuskan GA, Yang X (2014) Functional genomics of drought tolerance in bioenergy crops. Critical Reviews in Plant Sciences 33, 205–224.
Functional genomics of drought tolerance in bioenergy crops.Crossref | GoogleScholarGoogle Scholar |