Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Metabolomics deciphers quantitative resistance mechanisms in diploid potato clones against late blight

Kalenahalli N. Yogendra A , Ajjamada C. Kushalappa A C , Felipe Sarmiento B , Ernesto Rodriguez B and Teresa Mosquera B
+ Author Affiliations
- Author Affiliations

A Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.

B Departmento de Agronomia, Universidad National de Colombia, Bogota, Colombia.

C Corresponding author. Email: ajjamada.kushalappa@mcgill.ca

Functional Plant Biology 42(3) 284-298 https://doi.org/10.1071/FP14177
Submitted: 8 July 2014  Accepted: 23 September 2014   Published: 11 November 2014

Abstract

Resistance to late blight in potato is either qualitative or quantitative in nature. The quantitative resistance is durable, but the molecular and biochemical mechanisms underlying quantitative resistance are poorly understood, and are not efficiently utilised in potato breeding. A non-targeted metabolomics, using high resolution hybrid mass spectrometry, was applied to decipher the mechanisms of resistance in the advanced breeding diploid potato genotypes (Solanum tuberosum L. Group Phureja), with valuable sources of genetic diversity. The metabolomics profiles of resistant genotypes (AC04 and AC09) were compared with a susceptible commercial genotype (Criolla Colombia), following Phytophthora infestans or mock-inoculation, to identify the resistance related (RR) metabolites. Metabolites belonging to phenylpropanoids, flavonoid and alkaloid chemical groups were highly induced in resistant genotypes relative to susceptible. Concurrently, the biosynthetic genes, tyrosine decarboxylase (TyDC) and tyramine hydroxycinnamoyl transferase (THT), involved in the biosynthesis of hydroxycinnamic acid amides (HCAAs), and chalcone synthase (CHS) and flavonol synthase (FLS), involved in flavonoid biosynthesis, were also upregulated, as confirmed by quantitative real-time PCR. Probable genes coding for these enzymes were sequenced and nonsynonymous single-nucleotide polymorphisms (nsSNPs) were identified. The resistance to late blight observed in this study was mainly associated with cell wall thickening due to deposition of HCAAs, flavonoids and alkaloids.

Additional keywords: Phytophthora infestans, single nucleotide polymorphism, Solanum tuberosum L.


References

Bassard JE, Ullmann P, Bernier F, Werck-Reichhart D (2010) Phenolamides: bridging polyamines to the phenolic metabolism. Phytochemistry 71, 1808–1824.
Phenolamides: bridging polyamines to the phenolic metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Ogt7bJ&md5=76422b8d68d93b6ac2c2370faba76042CAS | 20800856PubMed |

Bellincampi D, Cervone F, Lionetti V (2014) Plant cell wall dynamics and wall-related susceptibility in plant–pathogen interactions. Frontier in Plant Science 5, 228

Bethke G, Grundman RE, Sreekanta S, Truman W, Katagiri F, Glazebrook J (2014) Arabidopsis pectin methylesterases contribute to immunity against Pseudomonas syringae. Plant Physiology 164, 1093–1107.
Arabidopsis pectin methylesterases contribute to immunity against Pseudomonas syringae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks1Sls7k%3D&md5=623b1db7d23d174c482f3f71cbacd6fbCAS | 24367018PubMed |

Bollina V, Kushalappa AC (2011) In vitro inhibition of trichothecene biosynthesis in Fusarium graminearum by resistance-related endogenous metabolites identified in barley. Mycology 2, 291–296.

Bollina V, Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S, Faubert D, Hamzehzarghani H (2010) Mass spectrometry based metabolomics application to identify quantitative resistance related metabolites in barley against Fusarium head blight. Molecular Plant Pathology 11, 769–782.

Bollina V, Kushalappa AC, Choo TM, Dion Y, Rioux S (2011) Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry. Plant Molecular Biology 77, 355–370.
Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWrtLnJ&md5=11e7f2597d14a4047c271d43327c558eCAS | 21830145PubMed |

Campbell CL, Madden LV (1990) ‘Introduction to plant disease epidemiology.’ (John Wiley & Sons: New York)

Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research 33, W306–W310.
I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslyrtLY%3D&md5=af27e11ff626ff1f8e19a60fd7a0ca91CAS | 15980478PubMed |

Caten C, Jinks J (1968) Spontaneous variability of single isolates of Phytophthora infestans. I. Cultural variation. Canadian Journal of Botany 46, 329–348.
Spontaneous variability of single isolates of Phytophthora infestans. I. Cultural variation.Crossref | GoogleScholarGoogle Scholar |

Chamarthi SK, Kumar K, Gunnaiah R, Kushalappa AC, Dion Y, Choo TM (2014) Identification of fusarium head blight resistance related metabolites specific to doubled-haploid lines in barley. European Journal of Plant Pathology 138, 67–78.
Identification of fusarium head blight resistance related metabolites specific to doubled-haploid lines in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslSmt7zP&md5=899261f9e16d6bb99f33e12a5f2e4141CAS |

Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research 16, 10 881–10 890.
Multiple sequence alignment with hierarchical clustering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXjsVOqtA%3D%3D&md5=5d4f2c7a3b831eef5c602ed8c332820bCAS |

Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341, 746–751.
Pivoting the plant immune system from dissection to deployment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GhurjL&md5=985883afa552745c6b236f927409c4c0CAS | 23950531PubMed |

De Vos RC, Moco S, Lommen A, Keurentjes JJ, Bino RJ, Hall RD (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols 2, 778–791.
Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGntbfE&md5=a8abd44a695468745aa69424a2a28665CAS | 17446877PubMed |

Draffehn AM, Li L, Krezdorn N, Ding J, Lübeck J, Strahwald J, Muktar MS, Walkemeier B, Rotter B, Gebhardt C (2013) Comparative transcript profiling by SuperSAGE identifies novel candidate genes for controlling potato quantitative resistance to late blight not compromised by late maturity. Frontiers in Plant Science 4, 423
Comparative transcript profiling by SuperSAGE identifies novel candidate genes for controlling potato quantitative resistance to late blight not compromised by late maturity.Crossref | GoogleScholarGoogle Scholar | 24294214PubMed |

Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics 2, 155–168.
Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVCntbw%3D&md5=b09f1f2640eabaa37c963c0d09f34f44CAS | 18628911PubMed |

Franke RB, Dombrink I, Schreiber L (2012) Suberin goes genomics: use of a short living plant to investigate a long lasting polymer. Frontiers in Plant Science 3, 4
Suberin goes genomics: use of a short living plant to investigate a long lasting polymer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis12gu7c%3D&md5=973c254e041e845e741b36d594721234CAS | 22639633PubMed |

Fry W (2008) Phytophthora infestans: the plant (and R gene) destroyer. Molecular Plant Pathology 9, 385–402.
Phytophthora infestans: the plant (and R gene) destroyer.Crossref | GoogleScholarGoogle Scholar | 18705878PubMed |

Gebhardt C (2013) Bridging the gap between genome analysis and precision breeding in potato. Trends in Genetics 29, 248–256.
Bridging the gap between genome analysis and precision breeding in potato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVymu7vP&md5=46fa8407f727df7584a1f98381b0a078CAS | 23261028PubMed |

Graça J (2010) Hydroxycinnamates in suberin formation. Phytochemistry Reviews 9, 85–91.
Hydroxycinnamates in suberin formation.Crossref | GoogleScholarGoogle Scholar |

Gunnaiah R, Kushalappa AC (2014) Metabolomics deciphers the host resistance mechanisms in wheat cultivar Sumai-3, against trichothecene producing and non-producing isolates of Fusarium graminearum. Plant Physiology and Biochemistry 83, 40–50.
Metabolomics deciphers the host resistance mechanisms in wheat cultivar Sumai-3, against trichothecene producing and non-producing isolates of Fusarium graminearum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Klsb7L&md5=39eed615d878ef1e56a16aaa2c5f98d0CAS | 25084325PubMed |

Gunnaiah R, Kushalappa AC, Duggavathi R, Fox S, Somers DJ (2012) Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS ONE 7, e40695
Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOnsL%2FL&md5=4b3b88e85573587ffeb53203f5738ca2CAS | 22866179PubMed |

Gyetvai G, Sønderkær M, Göbel U, Basekow R, Ballvora A, Imhoff M, Kersten B, Nielsen KL, Gebhardt C (2012) The transcriptome of compatible and incompatible interactions of potato (Solanum tuberosum) with Phytophthora infestans revealed by deepSAGE analysis. PLoS ONE 7, e31526
The transcriptome of compatible and incompatible interactions of potato (Solanum tuberosum) with Phytophthora infestans revealed by deepSAGE analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFyrtr0%3D&md5=7b5238e8649bc44a49c04b07622e5b24CAS | 22328937PubMed |

Hagel JM, Facchini PJ (2013) Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant & Cell Physiology 54, 647–672.
Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVyrtrY%3D&md5=72b28c383938e5c180ab2e2df1e01f99CAS |

Hemleben V, Dressel A, Epping B, Lukačin R, Martens S, Austin M (2004) Characterization and structural features of a chalcone synthase mutation in a white-flowering line of Matthiola incana R.Br.(Brassicaceae). Plant Molecular Biology 55, 455–465.
Characterization and structural features of a chalcone synthase mutation in a white-flowering line of Matthiola incana R.Br.(Brassicaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFWhuw%3D%3D&md5=a404d6cda6a69c9fe0cd05c7f30a68b8CAS | 15604692PubMed |

Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Current Opinion in Plant Biology 13, 181–185.
Broad-spectrum and durability: understanding of quantitative disease resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFahs7w%3D&md5=945b2e09b82ddbafa5c80948cd6db41aCAS | 20097118PubMed |

Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S (2011) Mass spectrometry based metabolomics to identify potential biomarkers for resistance in barley against fusarium head blight (Fusarium graminearum). Journal of Chemical Ecology 37, 846–856.
Mass spectrometry based metabolomics to identify potential biomarkers for resistance in barley against fusarium head blight (Fusarium graminearum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsF2isL4%3D&md5=18d900317b013b01c92890755a8b5521CAS |

Kumaraswamy GK, Kushalappa AC, Choo T, Dion Y, Rioux S (2012) Differential metabolic response of barley genotypes, varying in resistance, to trichothecene‐producing and‐nonproducing (tri5−) isolates of Fusarium graminearum. Plant Pathology 61, 509–521.
Differential metabolic response of barley genotypes, varying in resistance, to trichothecene‐producing and‐nonproducing (tri5−) isolates of Fusarium graminearum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVeit7rF&md5=29549eb8bb2594c809a87ab0fe5e605dCAS |

Kushalappa AC, Gunnaiah R (2013) Metabolo-proteomics to discover plant biotic stress resistance genes. Trends in Plant Science 18, 522–531.
Metabolo-proteomics to discover plant biotic stress resistance genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpslKktb4%3D&md5=e8f7e883efba87d4338cd57bf68aca61CAS | 23790252PubMed |

Lindqvist-Kreuze H, Carbajulca D, Gonzalez-Escobedo G, Perez W, Bonierbale M (2010) Comparison of transcript profiles in late blight challenged Solanum cajamarquense and B3C1 potato clones. Molecular Plant Pathology 11, 513–530.
Comparison of transcript profiles in late blight challenged Solanum cajamarquense and B3C1 potato clones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVyqtL0%3D&md5=ed05f0fe0197fd24e4d1cb53ecaa7c0aCAS | 20618709PubMed |

Liu Z, Halterman D (2009) Analysis of proteins differentially accumulated during potato late blight resistance mediated by the RB resistance gene. Physiological and Molecular Plant Pathology 74, 151–160.
Analysis of proteins differentially accumulated during potato late blight resistance mediated by the RB resistance gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFCmu7k%3D&md5=a83d46935099dfe4a1e5003ef433048aCAS |

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=bd84bb918d7f9eebed3fb6a0ab2babdbCAS | 11846609PubMed |

López-Gresa MP, Torres C, Campos L, Lisón P, Rodrigo I, Bellés JM, Conejero V (2011) Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. Environmental and Experimental Botany 74, 216–228.
Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae.Crossref | GoogleScholarGoogle Scholar |

Ma Z, Michailides TJ (2005) Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection 24, 853–863.
Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVCktLw%3D&md5=39af69f4b24f2a42971fdff40214dbacCAS |

Morimoto S, Suemori K, Moriwaki J, Taura F, Tanaka H, Aso M, Tanaka M, Suemune H, Shimohigashi Y, Shoyama Y (2001) Morphine metabolism in the opium poppy and its possible physiological function biochemical characterization of the morphine metabolite, bismorphine. Journal of Biological Chemistry 276, 38 179–38 184.

Morimoto S, Suemori K, Taura F, Shoyama Y (2003) New dimeric morphine from opium poppy (Papaver somuniferum) and its physiological function. Journal of Natural Products 66, 987–989.
New dimeric morphine from opium poppy (Papaver somuniferum) and its physiological function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1ersLc%3D&md5=14408f3b86c224ff19e6589f2390117eCAS | 12880320PubMed |

Nagy NE, Fossdal CG, Krokene P, Krekling T, Lönneborg A, Solheim H (2004) Induced responses to pathogen infection in Norway spruce phloem: changes in polyphenolic parenchyma cells, chalcone synthase transcript levels and peroxidase activity. Tree Physiology 24, 505–515.
Induced responses to pathogen infection in Norway spruce phloem: changes in polyphenolic parenchyma cells, chalcone synthase transcript levels and peroxidase activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFOls7w%3D&md5=f443a7b86d4a8c8a8f0cc8dbc1062ef5CAS | 14996655PubMed |

Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany 56, 2907–2914.
Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCjt7jJ&md5=bd62bc3dc9e9db75c5c6237048547ab6CAS | 16188960PubMed |

Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395
MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data.Crossref | GoogleScholarGoogle Scholar | 20650010PubMed |

Pushpa D, Yogendra KN, Gunnaiah R, Kushalappa AC, Murphy A (2014) Identification of late blight resistance-related metabolites and genes in potato through nontargeted metabolomics. Plant Molecular Biology Reporter 32, 584–595.
Identification of late blight resistance-related metabolites and genes in potato through nontargeted metabolomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivF2jsLY%3D&md5=78ba1aaaec77856dab1df5e5ba276d44CAS |

Raja Abdul Rahman RNZ, Zakaria II, Salleh AB, Basri M (2012) Enzymatic properties and mutational studies of chalcone synthase from physcomitrella patens. International Journal of Molecular Sciences 13, 9673–9691.
Enzymatic properties and mutational studies of chalcone synthase from physcomitrella patens.Crossref | GoogleScholarGoogle Scholar |

Ranathunge K, Schreiber L, Franke R (2011) Suberin research in the genomics era-new interest for an old polymer. Plant Science 180, 399–413.
Suberin research in the genomics era-new interest for an old polymer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFSisA%3D%3D&md5=51621af462da2350327e506410b132ddCAS | 21421386PubMed |

Royal Horticultural Society (1986) RHS colour chart. (Royal Hort. Soc.: London, UK)

Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR (2013) The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiology and Biochemistry 72, 21–34.
The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFyhtrw%3D&md5=87b4671a7867a18aa0f8d813048ff44dCAS | 23473981PubMed |

Soylu S (2006) Accumulation of cell-wall bound phenolic compounds and phytoalexin in Arabidopsis thaliana leaves following inoculation with pathovars of Pseudomonas syringae. Plant Science 170, 942–952.
Accumulation of cell-wall bound phenolic compounds and phytoalexin in Arabidopsis thaliana leaves following inoculation with pathovars of Pseudomonas syringae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1artbw%3D&md5=9a8888884c956023ff498c0152004e5aCAS |

Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters 4, 147–157.
Significance of flavonoids in plant resistance: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFemsLvF&md5=3d3684acbb298b4aab07797a41003846CAS |

Venisse JS, Malnoy M, Faize M, Paulin JP, Brisset MN (2002) Modulation of defense responses of Malus spp. during compatible and incompatible interactions with Erwinia amylovora. Molecular Plant-Microbe Interactions 15, 1204–1212.
Modulation of defense responses of Malus spp. during compatible and incompatible interactions with Erwinia amylovora.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1Sjur8%3D&md5=4eebfdac110cf122df2bb7a69d6a24b3CAS | 12481992PubMed |

Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13, 134
Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1eqsr3I&md5=5affe49cebb06d6dab2cf18b849b8e6bCAS | 22708584PubMed |

Yogendra KN, Pushpa D, Mosa KA, Kushalappa AC, Murphy A, Mosquera T (2014) Quantitative resistance in potato leaves to late blight associated with induced hydroxycinnamic acid amides. Functional & Integrative Genomics 14, 285–298.
Quantitative resistance in potato leaves to late blight associated with induced hydroxycinnamic acid amides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVCmuw%3D%3D&md5=4270e7afb3d6bd7265c3937c9f238fe6CAS |

Zacarés L, López-Gresa MP, Fayos J, Primo J, Bellés JM, Conejero V (2007) Induction of p-coumaroyldopamine and feruloyldopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae. Molecular Plant-Microbe Interactions 20, 1439–1448.
Induction of p-coumaroyldopamine and feruloyldopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae.Crossref | GoogleScholarGoogle Scholar | 17977155PubMed |

Ziegler J, Facchini PJ, Geissler R, Schmidt J, Ammer C, Kramell R, Voigtländer S, Gesell A, Pienkny S, Brandt W (2009) Evolution of morphine biosynthesis in opium poppy. Phytochemistry 70, 1696–1707.
Evolution of morphine biosynthesis in opium poppy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWls7fI&md5=11be5b8dc2f853ca2520a15775e257c7CAS | 19665152PubMed |