Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Brachypodium distachyon: a model species for aluminium tolerance in Poaceae

Roberto Contreras A , Ana M. Figueiras A , Francisco J. Gallego A and Cesar Benito A B
+ Author Affiliations
- Author Affiliations

A Departamento de Genética, Facultad de Biología, Universidad Complutense, 28040-Madrid, Spain.

B Corresponding author. Email: cebe8183@bio.ucm.es

Functional Plant Biology 41(12) 1270-1283 https://doi.org/10.1071/FP13362
Submitted: 18 December 2013  Accepted: 31 May 2014   Published: 29 July 2014

Abstract

Aluminium (Al) toxicity is the main abiotic stress limiting plant productivity in acidic soils. Studies on Al tolerance have been conducted in Poaceae but their genomes are very complex. Fifty-nine diploid lines (2n = 10) of Brachypodium distachyon (L.) P. Beauv. and 37 allotetraploid samples (2n = 30) of Brachypodium hybridum Catalán, Joch. Müll., Hasterok & Jenkins sp. nov. were used to evaluate their tolerance to different Al concentrations. B. distachyon is Al-sensitive compared with oat, rice and rye. The diploid lines (except ABR8) were sensitive like barley and Arabidopsis; however, 10 allotetraploid samples were Al-tolerant. Four different root-staining methods were used to detect Al accumulation, cell death, lipid peroxidation and H2O2 production in diploid and allotetraploid plants. The roots treated with Al showed more intense staining in sensitive than tolerant lines. Also, without any staining, the Al treated roots of sensitive plants appear darker than roots from tolerant ones. The study concerning to the organic acids exudation shows that the exudation of citrate and malate was induced only in the roots from tolerant diploid line (ABR8) and tolerant allotetraploid samples. In contrast, the mRNA expression changes of several candidate genes for Al-activated transporters belonging to the ALMT and MATE families were analysed by quantitative PCR (qRT–PCR). The data obtained indicate that the transcripts from BdALMT1, BdMATE1 and BdMATE2 were present mainly in roots and, moreover, that the BdALMT1 transcript is present in higher amounts in the tolerant ABR8 than in the sensitive ABR1 plants indicating that this gene may be involved in Al tolerance. Finally, an insertion was detected in the promoter region of the BdALMT1 of tolerant diploid and allotetraploid plants.

Additional keywords: aluminium tolerance, candidate genes, model plant, Poaceae.


References

Achary VMM, Jena S, Panda KK, Panda BB (2008) Aluminum induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicology and Environmental Safety 70, 300–310.
Aluminum induced oxidative stress and DNA damage in root cells of Allium cepa L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFCgsL4%3D&md5=e69109f7e0c59c4dbc8dc1670a512413CAS |

Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. Canadian Journal of Genetics and Cytology 26, 701–705.

Camargo CEO, Felício JC (1984) Tolerância de cultivares de trigo, triticale e centeio em diferentes níveis de alumínio em solução nutritiva. Bragantia 43, 9–16.
Tolerância de cultivares de trigo, triticale e centeio em diferentes níveis de alumínio em solução nutritiva.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XjtFyrsQ%3D%3D&md5=ea8bb80f72ae9b36edfe56833fc51d51CAS |

Cançado GMA, Loguercio LL, Martins PR, Parentoni SN, Paiva E, Borém A, Lopes MA (1999) Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L.). Theoretical and Applied Genetics 99, 747–754.
Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L.).Crossref | GoogleScholarGoogle Scholar |

Catalán P, Müller J, Hasterok R, Jenkins G, Mur LAJ, Langdon T, Betekhtin A, Siwinska D, Pimentel M, López-Álvarez D (2012) Evolution and taxonomic split of the model grass Brachypodium distachyon. Annals of Botany 109, 385–405.
Evolution and taxonomic split of the model grass Brachypodium distachyon.Crossref | GoogleScholarGoogle Scholar | 22213013PubMed |

Collins NC, Shirley NJ, Saeed M, Pallotta M, Gustafson JP (2008) An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179, 669–682.
An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsl2qtLk%3D&md5=6964afb7f3e984a7bda16af28634107cCAS | 18493079PubMed |

Dagley S (1974) Citrate: UV spectrophotometer determination. In ‘Methods of enzymatic analysis’. (Eds HU Bergmeyer, K Gawehn) pp. 1562–1565. (Academic Press: New York)

Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiology 107, 315–321.

Delhaize E, Ryan PR, Randall PJ (1993) Aluminium tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic-acid from root apices. Plant Physiology 103, 695–702.

Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proceedings of the National Academy of Sciences of the United States of America 101, 15 249–15 254.
Engineering high-level aluminum tolerance in barley with the ALMT1 gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsVSgurc%3D&md5=a54a89092b984c3682557b5869f9d6b1CAS |

Delhaize E, James RA, Ryan PR (2012) Aluminum tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil. New Phytologist 195, 609–619.
Aluminum tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVeisrY%3D&md5=2e6a2b5a1cfd3ec85e61fa4b5ddb2935CAS | 22642366PubMed |

Devi SR, Yamamoto Y, Matsumoto H (2003) An intracellular mechanism of aluminum tolerance associated with high antioxidant status in cultured tobacco cells. Journal of Inorganic Biochemistry 97, 59–68.
An intracellular mechanism of aluminum tolerance associated with high antioxidant status in cultured tobacco cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVKlt78%3D&md5=3f31960f687b75a3a52a921c7144f539CAS | 14507461PubMed |

Famoso AN, Clark RT, Shaff JE, Craft E, McCouch SR, Kochian LV (2010) Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiology 153, 1678–1691.
Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCrsr%2FL&md5=b287797ea84132df1e4124c5e5cbb22eCAS | 20538888PubMed |

Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, Hernández Riquer MV, Gallego FJ (2007) Candidate gene identification of an aluminum-activated organic acid transporter gene at the alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theoretical and Applied Genetics 114, 249–260.
Candidate gene identification of an aluminum-activated organic acid transporter gene at the alt4 locus for aluminum tolerance in rye (Secale cereale L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWntb3N&md5=07475948dc316ea040538d379d1dc8e6CAS | 17063338PubMed |

Foy CD (1988) Plant adaptation to acid aluminum-toxic soils. Communications in Soil Science and Plant Analysis 19, 959–987.
Plant adaptation to acid aluminum-toxic soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltV2gsLw%3D&md5=0795d9c68a8b0f77a84c72a269cdf06dCAS |

Foy CD, Lee EH, Coradetti CA, Taylor GJ (1990) Organic acids related to differential aluminum tolerance in wheat (Triticum aestivum) cultivars. In ‘Plant nutrition – physiology and applications’. (Ed. Zn ML van Beusichem) pp. 381–389. (Kluwer Academic Publishers: Dordrecht, The Netherlands)

Fujii M, Yokosho K, Yamaji N, Saisho D, Yamane M, Takahashi H, Sato K, Nakazono M, Maa JF (2012) Acquisition of aluminium tolerance by modification of a single gene in barley. Nature Communications 3, 713–721.
Acquisition of aluminium tolerance by modification of a single gene in barley.Crossref | GoogleScholarGoogle Scholar | 22395604PubMed |

Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant & Cell Physiology 48, 1081–1091.
An aluminum-activated citrate transporter in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKlsrrK&md5=ec0a314ca2ddf9f83cf0c62904c8d168CAS |

Gallego FJ, Benito C (1997) Genetic control of aluminium tolerance in rye (Secale cereale L.). Theoretical and Applied Genetics 95, 393–399.
Genetic control of aluminium tolerance in rye (Secale cereale L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtFGqtLw%3D&md5=ee835ba0b71cfbdae43e1ec8eab6bb98CAS |

Garvin DF, Gu Y-Q, Hasterok R, Hazen SP, Jenkins G, Mockler TC, Mur LAJ, Vogel JP (2008) Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research. Crop Science 48, S69–S84.
Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research.Crossref | GoogleScholarGoogle Scholar |

Gutmann I, Wahlefeld AW (1974). L-malate: determination with malate dehydrogenase and NAD. In ‘Methods of enzymatic analysis’. (Eds HU Bergmeyer, K Gawehn) pp. 1585–1589. (Academic Press: New York)

Hoekenga OA, Maron LG, Piñeros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103, 9738–9743.
AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVOntrY%3D&md5=f3ffffb2a43794dda2b640deb9344185CAS | 16740662PubMed |

Horst WJ, Asher CJ, Cakmak I, Szulkiewica P, Wissemeier AH (1992) Short-term responses on soybean roots to aluminum. Journal of Plant Physiology 140, 174–178.
Short-term responses on soybean roots to aluminum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xks1Cms7s%3D&md5=2ea4c3a3b36b93d907a0c5bb5b5da68aCAS |

Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proceedings of the National Academy of Sciences of the United States of America 104, 9900–9905.
Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance.Crossref | GoogleScholarGoogle Scholar | 17535918PubMed |

Jones DL, Blacaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminum uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant, Cell & Environment 29, 1309–1318.
Spatial coordination of aluminum uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVGjsr0%3D&md5=ebb319693ecc3d906df7ff480fc9b513CAS |

Kim BY, Baier AC, Somers DJ, Gustafson JP (2001) Aluminum tolerance in triticale, wheat, and rye. Euphytica 120, 329–337.
Aluminum tolerance in triticale, wheat, and rye.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFWmtb4%3D&md5=38012b7287210fdf0d7d65a22028bfe5CAS |

Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant and Soil 274, 175–195.
The physiology, genetics and molecular biology of plant aluminum resistance and toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWiurfN&md5=712781cafaa0221079c6e6e176e14311CAS |

Larsen PB, Tai CY, Kochian LV, Howell SH (1996) Arabidopsis mutants with increased sensitivity to aluminum. Plant Physiology 110, 743–751.
Arabidopsis mutants with increased sensitivity to aluminum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhs1Gis7s%3D&md5=b831f0908f6059614a93f4396d98b62aCAS | 8819866PubMed |

Li XF, Ma JF, Matsumoto HPC (2000) Pattern of aluminum induced secretion of organic acids differs between rye and wheat. Plant Physiology 123, 1537–1544.
Pattern of aluminum induced secretion of organic acids differs between rye and wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVegsro%3D&md5=fffc4ef70c86b6ea1dee335bfc19d497CAS | 10938369PubMed |

Lisch D (2013) How important are the transposons for plant evolution? Nature Reviews Genetics 14, 49–61.
How important are the transposons for plant evolution?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCht7%2FL&md5=f4ad89a848836cd0108995aa574540f2CAS | 23247435PubMed |

Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. The Plant Journal 57, 389–399.
Aluminum activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1KitLk%3D&md5=c3cf2cb76020de3db4943fd65a385d1bCAS | 18826429PubMed |

Ma JF, Furukawa J (2003) Recent progress in the research of external Al detoxification in higher plants: a mini review. Journal of Inorganic Biochemistry 97, 46–51.
Recent progress in the research of external Al detoxification in higher plants: a mini review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVKltrc%3D&md5=90ab94b8e8b57f2a3b953f9982c3feeaCAS | 14507459PubMed |

Ma JF, Zheng SJ, Hiradate S, Matsumoto H (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
Detoxifying aluminum with buckwheat.Crossref | GoogleScholarGoogle Scholar |

Ma JF, Taketa S, Yang ZM (2000) Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiology 122, 687–694.
Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFSqsbw%3D&md5=48da8411934e1462860aacf2642bdb02CAS | 10712531PubMed |

Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics 39, 1156–1161.
A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXps12gtL8%3D&md5=b764804bf30e58158e396b9883f839efCAS | 17721535PubMed |

Manzaneda AJ, Rey PJ, Bastida JM, Weiss-Lehman T, Raskin E, Mitchell-Olds T (2012) Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytologist 193, 797–805.
Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae).Crossref | GoogleScholarGoogle Scholar | 22150799PubMed |

Maron LG, Piñeros MA, Guimaraes CT, Magalhaes J, Pleiman JK, Mao C, Shaff J, Belicuas SNJ, Kochian LV (2010) Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporter potentially underlie two major aluminum tolerance QTLs in maize. The Plant Journal 61, 728–740.
Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporter potentially underlie two major aluminum tolerance QTLs in maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFaksbo%3D&md5=eb545ffbd5fe44a651ebd316eef56969CAS | 20003133PubMed |

Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminium tolerance in snapbeans – root exudation of citric-acid. Plant Physiology 96, 737–743.
Mechanism of aluminium tolerance in snapbeans – root exudation of citric-acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltVyitro%3D&md5=bb460584065b30c5580682afbac73ecfCAS | 16668249PubMed |

Mugwira LM, Elgawhary SM, Patel KI (1976) Differential tolerances of triticale, wheat, rye, and barley to aluminum in nutrient solution. Agronomy Journal 68, 782–787.
Differential tolerances of triticale, wheat, rye, and barley to aluminum in nutrient solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XlvFWgu7s%3D&md5=108eebb35a9c413fc3401c3dd9bdb6efCAS |

Mur LAJ, Allainguillaume J, Catalán P, Hasterok R, Jenkins G, Lesniewska K, Thomas I, Vogel J (2011) Exploiting the Brachypodium tool box in cereal and grass research. New Phytologist 191, 334–347.
Exploiting the Brachypodium tool box in cereal and grass research.Crossref | GoogleScholarGoogle Scholar |

Oliveira PH, Federizzi LC, Kothe Milach SC, Gotuzzo C, Sawasato JT (2005) Inheritance in oat (Avena sativa L.) of tolerance to soil aluminum toxicity. Crop Breeding and Applied Biotechnology 5, 302–309.
Inheritance in oat (Avena sativa L.) of tolerance to soil aluminum toxicity.Crossref | GoogleScholarGoogle Scholar |

Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196, 788–795.
Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnt1aqu7s%3D&md5=59d1808012fabb3c0f45bd49f1153267CAS |

Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminum tolerance in wheat by hematoxylin staining of seedling roots. Crop Science 18, 823–827.
Visual detection of aluminum tolerance in wheat by hematoxylin staining of seedling roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXjsl2mtQ%3D%3D&md5=6c7550ac55561abae1239f985b695da6CAS |

Raman H, Zhang K, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR (2005) Molecular characterization and mapping of ALMT1, the aluminum-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48, 781–791.
Molecular characterization and mapping of ALMT1, the aluminum-tolerance gene of bread wheat (Triticum aestivum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkslSnug%3D%3D&md5=7aa8a4608b233ad82f6fd4b64b4f3ad6CAS | 16391684PubMed |

Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiology 149, 340–351.
A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Wqt7w%3D&md5=eecf4e09baa7c46022c56a3c551fe1f1CAS | 19005085PubMed |

Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal 37, 645–653.
A wheat gene encoding an aluminum-activated malate transporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislyltr4%3D&md5=15319dc9d30b2c3d21e30ecef8a2cbc9CAS | 14871306PubMed |

Silva-Navas J, Benito C, Téllez-Robledo B, Abd El-Moneim D, Gallego FJ (2012) The ScAACT1 gene at the Qalt5 locus as a candidate for increased aluminum tolerance in rye (Secale cereale L.). Molecular Breeding 30, 845–856.
The ScAACT1 gene at the Qalt5 locus as a candidate for increased aluminum tolerance in rye (Secale cereale L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCrsb3M&md5=7fd97ca0dcfd8fb731854abae3cc232bCAS |

Tahara K, Yamanoshita T, Norisada M, Hasegawa I, Kashima H, Sasaki S, Kojima K (2008) Aluminum distribution and reactive oxygen species accumulation in root tips of two Melaleuca trees differing in aluminum resistance. Plant and Soil 307, 167–178.
Aluminum distribution and reactive oxygen species accumulation in root tips of two Melaleuca trees differing in aluminum resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsV2ktrc%3D&md5=1b0c7d216fcf432739f2885e3c57cc8fCAS |

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA 6: molecular evolutionary genetics analysis version 6. Molecular Biology and Evolution 30, 2725–2729.
MEGA 6: molecular evolutionary genetics analysis version 6.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=2504364b976e0abdf7079f45f502bdb9CAS | 24132122PubMed |

Tice KR, Parker DR, Demason DA (1992) Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat. Plant Physiology 100, 309–318.
Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmt1yjs7c%3D&md5=08e2943a8b8d14b1cde89b0b209ef384CAS | 16652962PubMed |

Tovkach A, Ryan PR, Richardson AE, Lewis DC, Rathjen TM, Ramesh S, Tyerman SD, Delhaize E (2013) Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices. Plant Physiology 161, 880–892.
Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFKqsL0%3D&md5=2f67dc939e70cfe3c62db2ef89860d9aCAS | 23204428PubMed |

Von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant and Soil 171, 1–15.
Global extent, development and economic impact of acid soils.Crossref | GoogleScholarGoogle Scholar |

Wang J, Raman H, Zhou M, Ryan PR, Delhaize E, Hebb DM, Coombes N, Mendham N (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 115, 265–276.
High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFamu7s%3D&md5=e504f44c24c16a5ddb0281f93a71196bCAS | 17551710PubMed |

Yamamoto Y, Yukiko Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiology 125, 199–208.
Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslymu7o%3D&md5=3b126e89c78e9d8aefb47d1eba4b39cdCAS | 11154329PubMed |

Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiology 128, 63–72.
Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVSktw%3D%3D&md5=650d7c6f097b71b36528b8a3de7413daCAS | 11788753PubMed |

Yang XY, Yang JL, Zhou Y, Piñeros MA, Kochian LV, Li GX, Zheng SJ (2011) A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex. Plant, Cell & Environment 34, 2138–2148.
A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Glt7nF&md5=f95bb57159b6f304693886648f60b275CAS |

Yokosho K, Yamaji N, Ma JF (2010) Isolation and characterization of two MATE genes in rye. Functional Plant Biology 37, 296–303.
Isolation and characterization of two MATE genes in rye.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVGhurc%3D&md5=a9b47efb39b804f05f4c6d59f2d542fcCAS |

Yokosho K, Yamaji N, Ma JF (2011) An Al-inducible MATE gene is involved in external detoxification of Al in rice. The Plant Journal 68, 1061–1069.
An Al-inducible MATE gene is involved in external detoxification of Al in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmtlegug%3D%3D&md5=8c5bbeea8a1621b5e65a748291acab88CAS | 21880027PubMed |