Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Overexpression of AtbHLH112 suppresses lateral root emergence in Arabidopsis

Wen-Shu Wang A , Jiang Zhu A and Ying-Tang Lu A B
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.

B Corresponding author. Email: yingtlu@whu.edu.cn

Functional Plant Biology 41(4) 342-352 https://doi.org/10.1071/FP13253
Submitted: 2 April 2013  Accepted: 14 October 2013   Published: 12 November 2013

Abstract

The basic/helix-loop-helix (bHLH) transcription factors are ubiquitous transcriptional regulators that control many different developmental and physiological processes in the eukaryotic kingdom. In this study, the function of AtbHLH112, an uncharacterised member of the bHLH family in Arabidopsis was investigated. Overexpression of AtbHLH112 suppressed lateral root (LR) development in Arabidopsis seedlings. Examination under the microscope revealed that abnormal lateral root primordia (LRP) with flat-head and more than four cell layers retained in the endodermal layer account for over 45% of the total number of LRP and LRs. This suggests that LRP emergence was prevented before LRP penetrated the cortical layer in the transgenic lines. Decreased auxin level within the LRP and parental root cells surrounding the LRP, as well as downregulated expression of cell-wall-remodelling (CWR) genes in the roots may contribute to the suppression of LR emergence in AtbHLH112-overexpressing lines. This finding was further supported by the observation that exogenous application of auxin recovered LR development and upregulated the expression of CWR genes in AtbHLH112-overexpressing lines.

Additional keywords: auxin, bHLH transcription factor, cell wall remodelling enzyme.


References

Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi M (2010) Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. The Plant Cell 22, 2171–2183.
Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKrtLfN&md5=2604cd4ded04483437ee6fd9cb8f30aeCAS | 20675575PubMed |

Becnel J, Natarajan M, Kipp A, Braam J (2006) Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and genevestigator. Plant Molecular Biology 61, 451–467.
Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and genevestigator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Oiurc%3D&md5=e61fa16cb3d127effda692c1c746c932CAS | 16830179PubMed |

Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602.
Local, efflux-dependent auxin gradients as a common module for plant organ formation.Crossref | GoogleScholarGoogle Scholar | 14651850PubMed |

Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. The Plant Journal 29, 325–332.
Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvFOitL8%3D&md5=2a91c3cf1e398a0afa8b0e35c057551aCAS | 11844109PubMed |

Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. The Plant Cell 13, 843–852.

Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends in Plant Science 8, 165–171.
Dissecting Arabidopsis lateral root development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFeqs7g%3D&md5=003f0783d0bcd1300837a5d6818e6791CAS | 12711228PubMed |

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735–743.
Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7mvVagsQ%3D%3D&md5=2d7dce8087879a64bd0f5c4ee5957cd1CAS | 10069079PubMed |

Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407, 321–326.
Loosening of plant cell walls by expansins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFyktLs%3D&md5=c7d93127361e8dccb593b6ac366340fdCAS | 11014181PubMed |

De Rybel B, Vassileva V, Parizot B, Demeulenaere M, Grunewald W, Audenaert D, Van Campenhout J, Overvoorde P, Jansen L, Vanneste S, Moller B, Wilson M, Holman T, Van Isterdael G, Brunoud G, Vuylsteke M, Vernoux T, De Veylder L, Inze D, Weijers D, Bennett MJ, Beeckman T (2010) A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Current Biology 20, 1697–1706.
A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OmtrjO&md5=e4fd8da4bcdeb147cc2db2252126b1efCAS | 20888232PubMed |

De Smet I, Tetsumura T, De Rybel B, Frey NF, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inze D, Bennett MJ, Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134, 681–690.
Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVyrtb4%3D&md5=5a913ad5900c3563dacf0ffac5c0b8b8CAS | 17215297PubMed |

De Smet I, Lau S, Voss U, Vanneste S, Benjamins R, Rademacher EH, Schlereth A, De Rybel B, Vassileva V, Grunewald W, Naudts M, Levesque MP, Ehrismann JS, Inze D, Luschnig C, Benfey PN, Weijers D, Van Montagu MC, Bennett MJ, Jurgens G, Beeckman T (2010) Bimodular auxin response controls organogenesis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 107, 2705–2710.
Bimodular auxin response controls organogenesis in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1SrtL8%3D&md5=8d1450cf7a410005d715ccd7dec3ea54CAS | 20133796PubMed |

Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445.
The F-box protein TIR1 is an auxin receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVeisrs%3D&md5=d7ebb19b3ef37ed884f5b43c10af3400CAS | 15917797PubMed |

Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal 66, 94–116.
Evolutionary and comparative analysis of MYB and bHLH plant transcription factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVKnu78%3D&md5=3c65e35c6e3c759b415689657d1f2006CAS | 21443626PubMed |

Ferre-D’Amare AR, Pognonec P, Roeder RG, Burley SK (1994) Structure and function of the b/HLH/Z domain of USF. EMBO Journal 13, 180–189.

Fukaki H, Tasaka M (2009) Hormone interactions during lateral root formation. Plant Molecular Biology 69, 437–449.
Hormone interactions during lateral root formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVOisLw%3D&md5=b3dd72a7153790b1b1f0717fa98757f4CAS | 18982413PubMed |

Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. The Plant Journal 29, 153–168.
Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvF2qtLk%3D&md5=dccb3361de22e1a4086cd42d93bb7e12CAS | 11862947PubMed |

Gonzalez-Carranza ZH, Elliott KA, Roberts JA (2007) Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana. Journal of Experimental Botany 58, 3719–3730.
Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWhurnJ&md5=d2782b8fc0805728cf0be2869c641be3CAS | 17928369PubMed |

Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution 20, 735–747.
The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFCgu78%3D&md5=acdc4730b74b0488c539f103d1d9b26aCAS | 12679534PubMed |

Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Molecular Biology 42, 819–832.
pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks12jsL0%3D&md5=e4d7b5e5bf2d1d3409d0ce3748c97214CAS | 10890530PubMed |

Hong SM, Bahn SC, Lyu A, Jung HS, Ahn JH (2010) Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis. Plant & Cell Physiology 51, 1694–1706.
Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OgsrbL&md5=100e307da55083a4d9187b33c3c23aa8CAS |

Hua W, Zhang L, Liang S, Jones RL, Lu YT (2004) A tobacco calcium/calmodulin-binding protein kinase functions as a negative regulator of flowering. Journal of Biological Chemistry 279, 31 483–31 494.
A tobacco calcium/calmodulin-binding protein kinase functions as a negative regulator of flowering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslOrsLc%3D&md5=9e88a017fe13fb5099baa6bde76a34fcCAS |

Laskowski M, Biller S, Stanley K, Kajstura T, Prusty R (2006) Expression profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of lateral root emergence. Plant & Cell Physiology 47, 788–792.
Expression profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of lateral root emergence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVCgsrs%3D&md5=abc6f0b4011e02a4e8060e1036f58971CAS |

Lee HW, Kim NY, Lee DJ, Kim J (2009) LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiology 151, 1377–1389.
LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCjsbnN&md5=3b6c98478f6e3e5dc4715a48d345ff2eCAS | 19717544PubMed |

Lewis MW, Leslie ME, Liljegren SJ (2006) Plant separation: 50 ways to leave your mother. Current Opinion in Plant Biology 9, 59–65.
Plant separation: 50 ways to leave your mother.Crossref | GoogleScholarGoogle Scholar | 16337172PubMed |

Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124, 33–44.

Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. Journal of Experimental Botany 63, 2853–2872.
The pathway of auxin biosynthesis in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1els7w%3D&md5=33a2a90427901ebda31b6ec791458a09CAS | 22447967PubMed |

Marin-Rodriguez MC, Orchard J, Seymour GB (2002) Pectate lyases, cell wall degradation and fruit softening. Journal of Experimental Botany 53, 2115–2119.
Pectate lyases, cell wall degradation and fruit softening.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVGks7c%3D&md5=6dc2a77ffdc27f8266a0759735dc6765CAS | 12324535PubMed |

Murre C, McCaw PS, Baltimore D (1989) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56, 777–783.
A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitVyjsb0%3D&md5=86ce2acd9579aead5f87af7d988e8baaCAS | 2493990PubMed |

Neuteboom LW, Veth-Tello LM, Clijdesdale OR, Hooykaas PJ, van der Zaal BJ (1999) A novel subtilisin-like protease gene from Arabidopsis thaliana is expressed at sites of lateral root emergence. DNA Research 6, 13–19.
A novel subtilisin-like protease gene from Arabidopsis thaliana is expressed at sites of lateral root emergence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlantrY%3D&md5=9fc2f12f7fb1b280d4f96febd9483594CAS | 10231025PubMed |

Nibau C, Gibbs DJ, Coates JC (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytologist 179, 595–614.
Branching out in new directions: the control of root architecture by lateral root formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKns7zN&md5=3fcc5152b09676c015726aa1e0ed206bCAS | 18452506PubMed |

Ogawa M, Kay P, Wilson S, Swain SM (2009) ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are Polygalacturonases required for cell separation during reproductive development in Arabidopsis. The Plant Cell 21, 216–233.
ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are Polygalacturonases required for cell separation during reproductive development in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFCit7o%3D&md5=6400114380c633b9b3b7354694bf339aCAS | 19168715PubMed |

Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. The Plant Cell 19, 118–130.
ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtFyntrg%3D&md5=c71cd7bf77c51769dbdd47066bd1730bCAS | 17259263PubMed |

Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009a) Arabidopsis lateral root development: an emerging story. Trends in Plant Science 14, 399–408.
Arabidopsis lateral root development: an emerging story.Crossref | GoogleScholarGoogle Scholar | 19559642PubMed |

Péret B, Larrieu A, Bennett MJ (2009b) Lateral root emergence: a difficult birth. Journal of Experimental Botany 60, 3637–3643.
Lateral root emergence: a difficult birth.Crossref | GoogleScholarGoogle Scholar | 19635746PubMed |

Péret B, Li G, Zhao J, Band LR, Voss U, Postaire O, Luu DT, Da Ines O, Casimiro I, Lucas M, Wells DM, Lazzerini L, Nacry P, King JR, Jensen OE, Schaffner AR, Maurel C, Bennett MJ (2012) Auxin regulates aquaporin function to facilitate lateral root emergence. Nature Cell Biology 14, 991–998.
Auxin regulates aquaporin function to facilitate lateral root emergence.Crossref | GoogleScholarGoogle Scholar | 22983115PubMed |

Petrasek J, Friml J (2009) Auxin transport routes in plant development. Development 136, 2675–2688.
Auxin transport routes in plant development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOhurnF&md5=79b8bb554d6fb62141893879ea61ca67CAS | 19633168PubMed |

Robinson KA, Lopes JM (2000) Survey and summary: Saccharomyces cerevisiae basic helix-loop-helix proteins regulate diverse biological processes. Nucleic Acids Research 28, 1499–1505.
Survey and summary: Saccharomyces cerevisiae basic helix-loop-helix proteins regulate diverse biological processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlGnurk%3D&md5=056370064c352299517af714ac0ba4a8CAS | 10710415PubMed |

Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiology 151, 275–289.
The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOjsb3P&md5=dcd752184fd54a281e9246bbb8078ec9CAS | 19625633PubMed |

Shkolnik-Inbar D, Bar-Zvi D (2010) ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. The Plant Cell 22, 3560–3573.
ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVersg%3D%3D&md5=1fbe472ae32d0f9c9eb2b92c37cffc13CAS | 21097710PubMed |

Sun L, van Nocker S (2010) Analysis of promoter activity of members of the PECTATE LYASE-LIKE (PLL) gene family in cell separation in Arabidopsis. BMC Plant Biology 10, 152
Analysis of promoter activity of members of the PECTATE LYASE-LIKE (PLL) gene family in cell separation in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 20649977PubMed |

Swarup K, Benkova E, Swarup R, Casimiro I, Peret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology 10, 946–954.
The auxin influx carrier LAX3 promotes lateral root emergence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1SmtLY%3D&md5=f576bb31f0a04834329f8e0ffc4a3564CAS | 18622388PubMed |

Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126, 711–721.

Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell 15, 1749–1770.
The Arabidopsis basic/helix-loop-helix transcription factor family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1WlsLg%3D&md5=9ad064820d371ab63162aaa96e356443CAS | 12897250PubMed |

Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. The Plant Cell 9, 1963–1971.

Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136, 1005–1016.
Auxin: a trigger for change in plant development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFSntro%3D&md5=9d8e4cd528bc49cbe3eb5793d693b169CAS | 19303845PubMed |

Yan DW, Wang J, Yuan TT, Hong LW, Gao X, Lu YT (2013) Perturbation of auxin homeostasis by overexpression of wild-type IAA15 results in impaired stem cell differentiation and gravitropism in roots. PLoS ONE 8, e58103
Perturbation of auxin homeostasis by overexpression of wild-type IAA15 results in impaired stem cell differentiation and gravitropism in roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlSrs7c%3D&md5=2270ed327079b791f72a54422f24179fCAS | 23472140PubMed |

Zhao Y, Wang T, Zhang W, Li X (2011) SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis. New Phytologist 189, 1122–1134.
SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFWlt7s%3D&md5=5f3b0b16e1a84ae15d87148c05594ad4CAS | 21087263PubMed |