Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW (Open Access)

Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: a review

Kunshan Gao A C and Douglas A. Campbell B
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Marine Environmental Science, Xiamen University, 361005 Xiamen, China.

B Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada.

C Corresponding author. Email: ksgao@xmu.edu.cn

Functional Plant Biology 41(5) 449-459 https://doi.org/10.1071/FP13247
Submitted: 21 August 2013  Accepted: 24 December 2013   Published: 13 February 2014

Journal Compilation © CSIRO Publishing 2014 Open Access CC BY-NC-ND

Abstract

Diatoms dominate nearly half of current oceanic productivity, so their responses to ocean acidification are of general concern regarding future oceanic carbon sequestration. Community, mesocosm and laboratory studies show a range of diatom growth and photophysiological responses to increasing pCO2. Nearly 20 studies on effects of elevated pCO2 on diatoms have shown stimulations, no effects or inhibitions of growth rates. These differential responses could result from differences in experimental setups, cell densities, levels of light and temperature, but also from taxon-specific physiology. Generally, ocean acidification treatments of lowered pH with elevated CO2 stimulate diatom growth under low to moderate levels of light, but lead to growth inhibition when combined with excess light. Additionally, diatom cell sizes and their co-varying metabolic rates can influence responses to increasing pCO2 and decreasing pH, although cell size effects are confounded with taxonomic specificities in cell structures and metabolism. Here we summarise known diatom growth and photophysiological responses to increasing pCO2 and decreasing pH, and discuss some reasons for the diverse responses observed across studies.

Additional keywords: Bacillariophyceae, CO2, diatom, ocean acidification, photoinhibition, photosynthesis.


References

Allen AE, Dupont CL, Oborník M, Horák A, Nunes-Nesi A, McCrow JP, Zheng H, Johnson DA, Hu H, Fernie AR, Bowler C (2011) Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473, 203–207.
Evolution and metabolic significance of the urea cycle in photosynthetic diatoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFGmur0%3D&md5=3ece83ae079e300a9cb9d6db4c11106cCAS | 21562560PubMed |

Aro E, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1143, 113–134.
Photoinhibition of photosystem II. Inactivation, protein damage and turnover.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1Kgtb0%3D&md5=da736f4d10c5888b10eda7b2f6780120CAS |

Barton AD, Finkel ZV, Ward BA, Johns DG, Follows MJ (2013) On the roles of cell size and trophic strategy in North Atlantic diatom and dinoflagellate communities. Limnology and Oceanography 58, 254–266.
On the roles of cell size and trophic strategy in North Atlantic diatom and dinoflagellate communities.Crossref | GoogleScholarGoogle Scholar |

Bartual A, Galvez JA (2002) Growth and biochemical composition of the diatom Phaeodactylum tricornutum at different pH and inorganic carbon levels under saturating and subsaturating light regimes. Botanica Marina 45, 491–501.
Growth and biochemical composition of the diatom Phaeodactylum tricornutum at different pH and inorganic carbon levels under saturating and subsaturating light regimes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1Gjtrg%3D&md5=4b596268f5327474f759c6f14b162619CAS |

Beardall J, Sobrino C, Stojkovic S (2009) Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers. Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology 8, 1257–1265.
Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGgs7fL&md5=5c4a3bfa92e60497a02a4e74997c9608CAS |

Boelen P, Van de Poll WH, Van der Strate HJ, Neven IA, Beardall J, Buma AGJ (2011) Neither elevated nor reduced CO2 affects the photophysiological performance of the marine Antarctic diatom Chaetoceros brevis. Journal of Experimental Marine Biology and Ecology 406, 38–45.
Neither elevated nor reduced CO2 affects the photophysiological performance of the marine Antarctic diatom Chaetoceros brevis.Crossref | GoogleScholarGoogle Scholar |

Bouma TJ, Visser R, Janssen JHJA, Kock MJ, Leeuwen PH, Lambers H (1994) Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect. Physiologia Plantarum 92, 585–594.
Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivVSls7o%3D&md5=dfe3eaa7f25c02db2f635b0b8e8a3571CAS |

Brewer PG, Peltzer ET (2009) Limits to marine life. Science 324, 347–348.
Limits to marine life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFant7g%3D&md5=760743a098b9f978dca212efbfbf7f4cCAS | 19372421PubMed |

Burkhardt S, Riebesell U (1997) CO2 availability affects elemental composition (C : N : P) of the marine diatom Skeletonema costatum. Marine Ecology Progress Series 155, 67–76.
CO2 availability affects elemental composition (C : N : P) of the marine diatom Skeletonema costatum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt12hsb4%3D&md5=ec9f468a6dc115bc33c102c73c4d71feCAS |

Burkhardt S, Zondervan I, Riebesell U (1999) Effect of CO2 concentration on the C : N : P ratio in marine phytoplankton: a species comparison. Limnology and Oceanography 44, 683–690.
Effect of CO2 concentration on the C : N : P ratio in marine phytoplankton: a species comparison.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1yjs7g%3D&md5=2a1b8347a0666ff89f1717f0cc18f6c9CAS |

Burkhardt S, Amoroso G, Riebesell U (2001) CO2 and HCO3 – uptake in marine diatoms acclimated to different CO2 concentrations. Limnology and Oceanography 46, 1378–1391.
CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVSktbs%3D&md5=c39d51d42420ebb0d429b98a148f3b79CAS |

Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425, 365
Oceanography: anthropogenic carbon and ocean pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2ktrs%3D&md5=8b6921755b2c2d70746ab46735261235CAS | 14508477PubMed |

Campbell DA, Hossain Z, Cockshutt AM, Zhaxybayeva O, Wu H, Li G (2013) Photosystem II protein clearance and FtsH function in the diatom Thalassiosira pseudonana. Photosynthesis Research 115, 43–54.
Photosystem II protein clearance and FtsH function in the diatom Thalassiosira pseudonana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFSnsb4%3D&md5=8749506f6b9b209ec908aab4b0547516CAS | 23504483PubMed |

Chen X, Gao K (2003) Effect of CO2 concentrations on the activity of photosynthetic CO2 fixation and extracelluar carbonic anhydrase in the marine diatom Skeletonema costatum. Chinese Science Bulletin 48, 2616–2620.
Effect of CO2 concentrations on the activity of photosynthetic CO2 fixation and extracelluar carbonic anhydrase in the marine diatom Skeletonema costatum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslyktA%3D%3D&md5=baedc8b9c044bc1706015d09c08984e3CAS |

Chen X, Gao K (2004a) Photosynthetic utilisation of inorganic carbon and its regulation in the marine diatom Skeletonema costatum. Functional Plant Biology 31, 1027–1033.
Photosynthetic utilisation of inorganic carbon and its regulation in the marine diatom Skeletonema costatum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosFSqu7Y%3D&md5=06e8361fd1b4b5ec71ac24d281f562e2CAS |

Chen X, Gao K (2004b) Characterization of diurnal photosynthetic rhythms in the marine diatom Skeletonema costatum grown in synchronous culture under ambient and elevated CO2. Functional Plant Biology 31, 399–404.
Characterization of diurnal photosynthetic rhythms in the marine diatom Skeletonema costatum grown in synchronous culture under ambient and elevated CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs12mu7w%3D&md5=531bdea2df00ed198bcaebb6cb0e5769CAS |

Chen S, Gao K (2011) Solar ultraviolet radiation and CO2-induced ocean acidification interacts to influence the photosynthetic performance of the red tide alga Phaeocystis globosa (Prymnesiophyceae). Hydrobiologia 675, 105–117.
Solar ultraviolet radiation and CO2-induced ocean acidification interacts to influence the photosynthetic performance of the red tide alga Phaeocystis globosa (Prymnesiophyceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWgsrfL&md5=e41c18bd468e03dfff57981d836c968cCAS |

Collins S, Bell G (2004) Phenotypic consequences of 1000 generations of selection at elevated CO2 in a green alga. Nature 431, 566–569.
Phenotypic consequences of 1000 generations of selection at elevated CO2 in a green alga.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFCnurk%3D&md5=6df5db54de405e0192ee9539b379f679CAS | 15457260PubMed |

Collins S, Sültemeyer D, Bell G (2006) Changes in C uptake in populations of Chlamydomonas reinhardtii selected at high CO2. Plant, Cell & Environment 29, 1812–1819.
Changes in C uptake in populations of Chlamydomonas reinhardtii selected at high CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWktLnF&md5=fce451fb7f440c0e2241c2c9e661a8c1CAS |

Crawfurd KJ, Raven JA, Wheeler GL, Baxter EJ, Joint I (2011) The response of Thalassiosira pseudonana to long-term exposure to increased CO2 and decreased pH. PLoS ONE 6, e26695
The response of Thalassiosira pseudonana to long-term exposure to increased CO2 and decreased pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyqu7zK&md5=6079760c0b68bd5f96408f76845099c8CAS | 22053201PubMed |

Doney SC (2006) Oceanography: plankton in a warmer world. Nature 444, 695–696.
Oceanography: plankton in a warmer world.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Ontb%2FN&md5=e1333420e8940632531b01ecfd8dbcfeCAS | 17151650PubMed |

Edelman M, Mattoo AK (2008) D1-protein dynamics in photosystem II: the lingering enigma. Photosynthesis Research 98, 609–620.
D1-protein dynamics in photosystem II: the lingering enigma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOgt7fN&md5=059466e02edc90e30b02f681b670545fCAS | 18709440PubMed |

Elzenga JTM, Prins HBA, Stefels J (2000) The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystis globosa (Pyrmnesiophyceae): a comparison with other marine algae using isotopic disequilibrium technique. Limnology and Oceanography 45, 372–380.
The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystis globosa (Pyrmnesiophyceae): a comparison with other marine algae using isotopic disequilibrium technique.Crossref | GoogleScholarGoogle Scholar |

Engel A (2002) Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton. Journal of Plankton Research 24, 49–53.
Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFOntbw%3D&md5=25602f5bf56116580591ffe521e1effbCAS |

Falkowski PG, Oliver MJ (2007) Mix and match: how climate selects phytoplankton. Nature Reviews. Microbiology 5, 813–819.
Mix and match: how climate selects phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVeis7nE&md5=0dca66c2e7209db7c8d97714f36912f9CAS | 17853908PubMed |

Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366.
Impact of anthropogenic CO2 on the CaCO3 system in the oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1egsbY%3D&md5=ecb5338a1b9c6edc091884ed853e5488CAS | 15256664PubMed |

Feng Y, Hare CE, Leblanc K, Rose JM, Zhang Y, DiTullio GR, Lee P, Wilhelm S, Rowe JM, Sun J, Nemcek N, Gueguen C, Passow U, Benner I, Brown C, Hutchins DA (2009) Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response. Marine Ecology Progress Series 388, 13–25.
Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SrtrjO&md5=677b14e256c574f1ab8b840a474c9457CAS |

Feng Y, Hare CE, Rose JM, Handy SM, DiTullio GR, Lee PA, Smith WO, Peloquin J, Tozzi S, Sun J, Zhang Y, Dunbar RB, Long MC, Sohst B, Lohan M, Hutchins DA (2010) Interactive effects of iron, irradiance and CO2 on Ross Sea phytoplankton. Deep-sea Research. Part I, Oceanographic Research Papers 57, 368–383.
Interactive effects of iron, irradiance and CO2 on Ross Sea phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFSntrw%3D&md5=fc8a35400c09b11a2c5e2e44cb7f6638CAS |

Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240.
Primary production of the biosphere: integrating terrestrial and oceanic components.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksFKitb0%3D&md5=f7ef5b418ebeed232244a9fb0bc32d6cCAS | 9657713PubMed |

Finkel ZV, Sebbo J, Feist-Burkhardt S, Irwin AJ, Katz ME, Schofield OME, Young JR, Falkowski PG (2007) A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic. Proceedings of the National Academy of Sciences of the United States of America 104, 20416–20420.
A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslemsw%3D%3D&md5=b90f189dec2161b9e71bb1cfbeb6c6e0CAS | 18077334PubMed |

Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research 32, 119–137.
Phytoplankton in a changing world: cell size and elemental stoichiometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFarsbrK&md5=7e9bd6a5aa4e5658f03c004d3d8c21a2CAS |

Flynn KJ, Blackford JC, Baird ME, Raven JA, Clark DR, Beardall J, Brownlee C, Fabian H, Wheeler GL (2012) Changes in pH at the exterior surface of plankton with ocean acidification. Nature Climate Change 2, 510–513.
Changes in pH at the exterior surface of plankton with ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGiu7w%3D&md5=0a2c5d02dc9ce1d15935b97c03caf0a6CAS |

Gao K, Ruan Z, Villafañe VE, Gattuso J-P, Helbling EW (2009) Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi. Limnology and Oceanography 54, 1855–1862.
Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKku7rO&md5=9da9f773843100216b1358d3d9d80c65CAS |

Gao K, Helbling EW, Häder DP, Hutchins DA (2012a) Ocean acidification and marine primary producers under the sun: a review of interactions between CO2, warming, and solar radiation. Marine Ecology Progress Series 470, 167–189.
Ocean acidification and marine primary producers under the sun: a review of interactions between CO2, warming, and solar radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVSis70%3D&md5=f72972f3a173c713c3a46f4c4adc79daCAS |

Gao K, Xu J, Gao G, Li Y, Hutchins DA, Huang B, Wang L, Zheng Y, Jin P, Cai X, Häder D, Li W, Xu K, Liu N, Riebesell U (2012b) Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nature Climate Change 2, 519–523.

Gattuso J-P, Hansson L (2011) ‘Ocean acidification.’ (Oxford University Press: Oxford)

Gattuso J-P, Gao K, Lee K, Rost B, Schulz KG (2010) Approaches and tools to manipulate the carbonate chemistry. In ‘Guide to best practices for ocean acidification research and data reporting’. (Eds U Riebesell, VJ Fabry, L Hansson, JP Gattuso) pp. 41–52. (Publications Office of the European Union: Luxembourg)

Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology 56, 99–131.
CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVaru7w%3D&md5=8c4b5aae2facd09285c7681a28b1376eCAS | 15862091PubMed |

Guan W, Gao K (2008) Light histories influence the impacts of solar ultraviolet radiation on photosynthesis and growth in a marine diatom, Skeletonema costatum. Journal of Photochemistry and Photobiology. B, Biology 91, 151–156.
Light histories influence the impacts of solar ultraviolet radiation on photosynthesis and growth in a marine diatom, Skeletonema costatum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVSgsbc%3D&md5=5c25dc92d8c529bad374859c7c9fcf1dCAS | 18462948PubMed |

Häder D-P (2011) Does enhanced solar UV-B radiation affect marine primary producers in their natural habitats? Photochemistry and Photobiology 87, 263–266.
Does enhanced solar UV-B radiation affect marine primary producers in their natural habitats?Crossref | GoogleScholarGoogle Scholar | 21208211PubMed |

Haimovich-Dayan M, Garfinkel N, Ewe D, Marcus Y, Gruber A, Wagner H, Kroth PG, Kaplan A (2013) The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum. New Phytologist 197, 177–185.
The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslelsL%2FK&md5=0670558ce317cee968db1d162afe503aCAS | 23078356PubMed |

Harada H, Nakajima K, Sakaue K, Matsuda Y (2006) CO2 sensing at ocean surface mediated by cAMP in a marine diatom. Plant Physiology 142, 1318–1328.
CO2 sensing at ocean surface mediated by cAMP in a marine diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eju7%2FJ&md5=f55cee28e1603d13e43828cf86d54788CAS | 17012409PubMed |

Hare CE, Leblanc K, DiTullio GR, Kudela RM, Zhang Y, Lee PA, Riseman S, Hutchins DA (2007) Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. Marine Ecology Progress Series 352, 9–16.
Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlKhsrw%3D&md5=bef21e7a1003d54972a235372424c305CAS |

Hein M, Sand-Jensen K (1997) CO2 increases oceanic primary production. Nature 388, 526–527.
CO2 increases oceanic primary production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1arsbk%3D&md5=2a3a3e555ad6b2499c0c4f0216232ec2CAS |

Hervé V, Derr J, Douady S, Quinet M, Moisan L, Lopez PJ (2012) Multiparametric analyses reveal the pH-dependence of silicon biomineralization in diatoms. PLoS ONE 7, e46722
Multiparametric analyses reveal the pH-dependence of silicon biomineralization in diatoms.Crossref | GoogleScholarGoogle Scholar | 23144697PubMed |

Hinder SL, Hays GC, Edwards M, Roberts EC, Walne AW, Gravenor MB (2012) Changes in marine dinoflagellate and diatom abundance under climate change. Nature Climate Change 2, 271–275.
Changes in marine dinoflagellate and diatom abundance under climate change.Crossref | GoogleScholarGoogle Scholar |

Hopkinson BM, Dupont CL, Allen AE, Morel FMM (2011) Efficiency of the CO2-concentrating mechanism of diatoms. Proceedings of the National Academy of Sciences of the United States of America 108, 3830–3837.
Efficiency of the CO2-concentrating mechanism of diatoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Wqsb8%3D&md5=168a7eee2603ae4518190e12b17e2312CAS | 21321195PubMed |

Hopkinson BM, Meile C, Shen C (2013) Quantification of extracellular carbonic anhydrase activity in two marine diatoms and investigation of its role. Plant Physiology 162, 1142–1152.
Quantification of extracellular carbonic anhydrase activity in two marine diatoms and investigation of its role.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1Oqsbw%3D&md5=6e0b87a440d2530cd19e9402b2a5c09bCAS | 23656892PubMed |

Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) ‘IPCC climate change: the scientific basis.’ (Cambridge University Press: Cambridge, UK)

Ihnken S, Roberts S, Beardall J (2011) Differential responses of growth and photosynthesis in the marine diatom Chaetoceros muelleri to CO2 and light availability. Phycologia 50, 182–193.
Differential responses of growth and photosynthesis in the marine diatom Chaetoceros muelleri to CO2 and light availability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFKit7k%3D&md5=bd6d777749a015291cdd5f4568e1911bCAS |

Isensee K, Erez J, Stoll H (2013) Detection of a variable internal C i pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. Physiologia Plantarum
Detection of a variable internal C i pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system.Crossref | GoogleScholarGoogle Scholar | 23992373PubMed | n press

Jin P, Gao K, Villafañe VE, Campbell DA, Helbling W (2013a) Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating UV and visible radiation. Plant Physiology 162, 2084–2094.
Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating UV and visible radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlWlt7vO&md5=b61e81995a203ce9bbdd54ba7d2475e2CAS | 23749851PubMed |

Jin P, Gao K, Beardall J (2013b) Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification. Evolution 67, 1869–1878.
Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WiurrM&md5=e9d3fae9c70dc0f300e2c6687e7a0c43CAS | 23815645PubMed |

Johnson VR, Brownlee C, Rickaby REM, Graziano M, Milazzo M, Hall-Spencer JM (2013) Responses of marine benthic microalgae to elevated CO2. Marine Biology 160, 1813–1824.
Responses of marine benthic microalgae to elevated CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Ggs7jL&md5=d4d3d72f5ee3ba38d20484515641200cCAS |

Kaplan A, Badger MR, Berry JA (1980) Photosynthesis and the intracellular inorganic carbon pool in the bluegreen alga Anabaena variabilis: response to external CO2 concentration. Planta 149, 219–226.
Photosynthesis and the intracellular inorganic carbon pool in the bluegreen alga Anabaena variabilis: response to external CO2 concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlsVKmt74%3D&md5=593e157573d5401d351d9f606fd57f56CAS | 24306290PubMed |

Key T, Mccarthy A, Campbell D, Six C, Roy S, Finkel Z (2010) Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environmental Microbiology 12, 95–104.
Cell size trade-offs govern light exploitation strategies in marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFaisLg%3D&md5=39a7599d74eb09dc59ba2606675e5487CAS | 19735282PubMed |

Kim J-M, Lee K, Shin K, Kang J-H, Lee H-W, Kim M, Jang P-G, Jang M-C (2006) The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnology and Oceanography 51, 1629–1636.
The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1antLo%3D&md5=d5eb98bf26ac035d09a1bcaedeb2f76cCAS |

King AL, Sañudo-Wilhelmy SA, Leblanc K, Hutchins DA, Fu F (2011) CO2 and vitamin B12 interactions determine bioactive trace metal requirements of a subarctic Pacific diatom. ISME Journal 5, 1388–1396.
CO2 and vitamin B12 interactions determine bioactive trace metal requirements of a subarctic Pacific diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVynurg%3D&md5=69facaf3064bbb5b9796db64d9e9592dCAS | 21248860PubMed |

Kok B (1956) On the inhibition of photosynthesis by intense light. Biochimica et Biophysica Acta 21, 234–244.
On the inhibition of photosynthesis by intense light.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XptVeitw%3D%3D&md5=2d59c552c6d5a41cee05cd89d6dc28ffCAS | 13363902PubMed |

Korb RE, Saville PJ, Johnston AM, Raven JA (1997) Sources of inorganic carbon for photosynthesis by three species of marine diatom. Journal of Phycology 33, 433–440.
Sources of inorganic carbon for photosynthesis by three species of marine diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslOisro%3D&md5=4ddf9216800c413baf898fadabfc5f70CAS |

Lavaud J, Rousseau B, Etienne A-L (2004) General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). Journal of Phycology 40, 130–137.
General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae).Crossref | GoogleScholarGoogle Scholar |

Lavaud J, Strzepek RF, Kroth PG (2007) Photoprotection capacity differs among diatoms: possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate. Limnology and Oceanography 52, 1188–1194.
Photoprotection capacity differs among diatoms: possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1ymtbs%3D&md5=098016f4dcd8e5b6628242847251a295CAS |

Li G, Campbell DA (2013) Rising CO2 interacts with growth light and growth rate to alter photosystem II photoinactivation of the coastal diatom Thalassiosira pseudonana. PLoS ONE 8, e55562
Rising CO2 interacts with growth light and growth rate to alter photosystem II photoinactivation of the coastal diatom Thalassiosira pseudonana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXis1yltLY%3D&md5=32cd7f2fb9c1e0aaa08649ce96d91472CAS | 23383226PubMed |

Li Q, Canvin DT (1998) Energy sources for HCO3 − and CO2 transport in air-grown cells of Synechococcus UTEX 625. Plant Physiology 116, 1125–1132.
Energy sources for HCO3 and CO2 transport in air-grown cells of Synechococcus UTEX 625.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVOjsLk%3D&md5=92998e755624e1ea38baa0fc35c52825CAS | 9501145PubMed |

Li YH, Gao K, Villafañe VE, Helbling EW (2012a) Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum. Biogeosciences 9, 3931–3942.
Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Gku7w%3D&md5=d0529721796d2127b3b50e397675405eCAS |

Li W, Gao K, Beardall J (2012b) Interactive effects of ocean acidification and nitrogen-limitation on the diatom Phaeodactylum tricornutum. PLoS ONE 7, e51590
Interactive effects of ocean acidification and nitrogen-limitation on the diatom Phaeodactylum tricornutum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2qtr%2FJ&md5=7661f4f8abe6811cd3bfeb0c259d3660CAS | 23236517PubMed |

Lohbeck KT, Riebesell U, Reusch TBH (2012) Adaptive evolution of a key phytoplankton species to ocean acidification. Nature Geoscience 5, 346–351.
Adaptive evolution of a key phytoplankton species to ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltFOgsbg%3D&md5=307d2692703707d96636b8423cbae1f9CAS |

Low-Décarie E, Fussmann GF, Bell G (2011) The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Global Change Biology 17, 2525–2535.
The effect of elevated CO2 on growth and competition in experimental phytoplankton communities.Crossref | GoogleScholarGoogle Scholar |

Matsuda Y, Hara T, Colman B (2001) Regulation of the induction of bicarbonate uptake by dissolved CO2 in the marine diatom, Phaeodactylum tricornutum. Plant, Cell & Environment 24, 611–620.
Regulation of the induction of bicarbonate uptake by dissolved CO2 in the marine diatom, Phaeodactylum tricornutum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVOgtb0%3D&md5=edb611b415ab3b43bbd85d0b9bbbe34fCAS |

McCarthy A, Rogers SP, Duffy SJ, Campbell DA (2012) Elevated carbon dioxide differentially alters the photophysiology of Thalassiosira pseudonana (Bacillariophyceae) and Emiliania huxleyi (Haptophyta). Journal of Phycology 48, 635–646.
Elevated carbon dioxide differentially alters the photophysiology of Thalassiosira pseudonana (Bacillariophyceae) and Emiliania huxleyi (Haptophyta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSrtbjF&md5=ec15866bc98886a980e73588311a155fCAS |

Mejía LM, Isensee K, Méndez-Vicente A, Pisonero J, Shimizu N, González C, Monteleone B, Stoll H (2013) B content and Si/C ratios from cultured diatoms (Thalassiosira pseudonana and Thalassiosira weissflogii): relationship to seawater pH and diatom carbon acquisition. Geochimica et Cosmochimica Acta 123, 322–337.
B content and Si/C ratios from cultured diatoms (Thalassiosira pseudonana and Thalassiosira weissflogii): relationship to seawater pH and diatom carbon acquisition.Crossref | GoogleScholarGoogle Scholar |

Millero FJ, Woosley R, Ditrolio B, Waters J (2009) Effect of ocean acidification on the speciation of metals in seawater. Oceanography 22, 72–85.
Effect of ocean acidification on the speciation of metals in seawater.Crossref | GoogleScholarGoogle Scholar |

Milligan AJ, Morel FMM (2002) A proton buffering role for silica in diatoms. Science 297, 1848–1850.
A proton buffering role for silica in diatoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvFGgsrs%3D&md5=3e8bab26444affb93329d939990883c6CAS | 12228711PubMed |

Mitchell JG, Seuront L, Doubell MJ, Losic D, Voelcker NH, Seymour J, Lal R (2013) The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment. PLoS ONE 8, e59548
The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslGjtLw%3D&md5=da7e127a739799283fbf8dc4170a0b3bCAS | 23667421PubMed |

Morel FMM, Reinfelder JR, Roberts SB, Chamberlain CP, Lee JG, Yee D (1994) Zinc and carbon co-limitation of marine phytoplankton. Nature 369, 740–742.
Zinc and carbon co-limitation of marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlt12lur8%3D&md5=c11e035a280497e70acc0b2c2767d853CAS |

Mutshinda CM, Troccoli-Ghinaglia L, Finkel ZV, Müller-Karger FE, Irwin AJ (2013) Environmental control of the dominant phytoplankton in the Cariaco basin: a hierarchical Bayesian approach. Marine Biology Research 9, 246–260.
Environmental control of the dominant phytoplankton in the Cariaco basin: a hierarchical Bayesian approach.Crossref | GoogleScholarGoogle Scholar |

Nagao R, Tomo T, Noguchi E, Suzuki T, Okumura A, Narikawa R, Enami I, Ikeuchi M (2012) Proteases are associated with a minor fucoxanthin chlorophyll a/c-binding protein from the diatom, Chaetoceros gracilis. Biochimica et Biophysica Acta 1817, 2110–2117.
Proteases are associated with a minor fucoxanthin chlorophyll a/c-binding protein from the diatom, Chaetoceros gracilis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2qtbjI&md5=3326125180c2c1c8d42e56023d216e5cCAS | 22967834PubMed |

Nakajima K, Tanaka A, Matsuda Y (2013) SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proceedings of the National Academy of Sciences of the United States of America 110, 1767–1772.
SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislChsLo%3D&md5=d194959a057130e222739bf00f58afcfCAS | 23297242PubMed |

Nimer NA, Iglesias-Rodriguez MD, Merrett MJ (1997) Bicarbonate utilization by marine phytoplankton species. Journal of Phycology 33, 625–631.
Bicarbonate utilization by marine phytoplankton species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvV2qtrg%3D&md5=f3184b4702e4639772ffe7196df0c8efCAS |

Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J (2010) Recent advances in understanding the assembly and repair of photosystem II. Annals of Botany 106, 1–16.
Recent advances in understanding the assembly and repair of photosystem II.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWjsb4%3D&md5=46047e7eb26177dabfe1b4eb47a2d3e5CAS | 20338950PubMed |

Niyogi KK, Li X-P, Rosenberg V, Jung H-S (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? Journal of Experimental Botany 56, 375–382.
Is PsbS the site of non-photochemical quenching in photosynthesis?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovVymuw%3D%3D&md5=651acca7516f18f197337eb3c383d39aCAS | 15611143PubMed |

Orellana M, Ashworth J, Lee A, Armbrust EV (2013) ‘A systems approach to diatom responses to ocean acidification.’ (The Molecular Life of Diatoms EMBO Workshop: Paris)

Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686.
Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsL%2FE&md5=3764c303dd2dac3f7a26ed0fb69f00e5CAS | 16193043PubMed |

Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322, 690–692.
Physiology and climate change.Crossref | GoogleScholarGoogle Scholar | 18974339PubMed |

Raven JA (1991) Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature. Plant, Cell & Environment 14, 779–794.
Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsVyisbc%3D&md5=dc15a859ae05c58b7070d11b8d0731f0CAS |

Raven JA (1993) Limits on growth rates. Nature 361, 209–210.
Limits on growth rates.Crossref | GoogleScholarGoogle Scholar |

Raven JA (2010) Inorganic carbon acquisition by eukaryotic algae: four current questions. 106, 123–134.

Raven JA, Johnston AM (1991) Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for the use of other resources. Limnology and Oceanography 36, 1701–1714.
Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for the use of other resources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xkt1entr0%3D&md5=2c2cf2ed1f7bc6cf1beb26833700d368CAS |

Raven JA, Giordano M, Beardall J, Maberly SC (2011) Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynthesis Research 109, 281–296.
Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOqu7vO&md5=53fe332da4c683da6da089878c189e27CAS | 21327536PubMed |

Reinfelder JR (2011) Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annual Review of Marine Science 3, 291–315.
Carbon concentrating mechanisms in eukaryotic marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 21329207PubMed |

Reinfelder JR, Kraepiel AM, Morel FM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407, 996–999.
Unicellular C4 photosynthesis in a marine diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVaru7k%3D&md5=c3c42fe0f57d92c13e64f123bbe48436CAS | 11069177PubMed |

Reinfelder JR, Milligan AJ, Morel FMM (2004) The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiology 135, 2106–2111.
The role of the C4 pathway in carbon accumulation and fixation in a marine diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1Ggs70%3D&md5=a557c1a95d9c74af85ec7d63153ebf52CAS | 15286292PubMed |

Riebesell U, Tortell PD (2011) Effects of ocean acidification on pelagic organisms and ecosystems. In ‘Ocean acidification’. (Oxford University Press: Oxford)

Riebesell U, Wolf-Gladrow DA, Smetacek V (1993) Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361, 249–251.
Carbon dioxide limitation of marine phytoplankton growth rates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhs1Cqurc%3D&md5=7cb4a95f1c213acfcc142134f83a2300CAS |

Roberts K, Granum E, Leegood RC, Raven JA (2007a) C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiology 145, 230–235.
C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKqtr%2FN&md5=79d832f9c6aaf7d48f0cc4aaa44cb9f1CAS | 17644625PubMed |

Roberts K, Granum E, Leegood RC, Raven JA (2007b) Carbon acquisition by diatoms. Photosynthesis Research 93, 79–88.
Carbon acquisition by diatoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlKgt7o%3D&md5=d5db097a80799f8806cad4a3452cdb70CAS | 17497225PubMed |

Rost B, Riebesell U, Burkhardt S, Sültemeyer D (2003) Carbon acquisition of bloom-forming marine phytoplankton. Limnology and Oceanography 48, 55–67.
Carbon acquisition of bloom-forming marine phytoplankton.Crossref | GoogleScholarGoogle Scholar |

Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305, 367–371.
The oceanic sink for anthropogenic CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1egsbc%3D&md5=6212d8dddbd30d2a8b300fd70f98da95CAS | 15256665PubMed |

Schippers P, Lürling M, Scheffer M (2004) Increase of atmospheric CO2 promotes phytoplankton productivity. Ecology Letters 7, 446–451.
Increase of atmospheric CO2 promotes phytoplankton productivity.Crossref | GoogleScholarGoogle Scholar |

Shatwell T, Nicklisch A, Köhler J (2012) Temperature and photoperiod effects on phytoplankton growing under simulated mixed layer light fluctuations. Limnology and Oceanography 57, 541–553.
Temperature and photoperiod effects on phytoplankton growing under simulated mixed layer light fluctuations.Crossref | GoogleScholarGoogle Scholar |

Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45, 361–402.
Evolution of the diatoms: insights from fossil, biological and molecular data.Crossref | GoogleScholarGoogle Scholar |

Six C, Finkel ZV, Irwin AJ, Campbell DA (2007) Light variability illuminates niche-partitioning among marine picocyanobacteria. PLoS ONE 2, e1341
Light variability illuminates niche-partitioning among marine picocyanobacteria.Crossref | GoogleScholarGoogle Scholar | 18092006PubMed |

Six C, Sherrard R, Lionard M, Roy S, Campbell D (2009) Photosystem II and pigment dynamics among ecotypes of the green alga Ostreococcus. Plant Physiology 151, 379–390.
Photosystem II and pigment dynamics among ecotypes of the green alga Ostreococcus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOjsbrM&md5=9643dbb13aa43346a070387cbf46d88eCAS | 19587099PubMed |

Sobrino C, Ward ML, Neale PJ (2008) Acclimation to elevated carbon dioxide and ultraviolet radiation in the diatom Thalassiosira pseudonana: effects on growth, photosynthesis, and spectral sensitivity of photoinhibition. Limnology and Oceanography 53, 494–505.
Acclimation to elevated carbon dioxide and ultraviolet radiation in the diatom Thalassiosira pseudonana: effects on growth, photosynthesis, and spectral sensitivity of photoinhibition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFKjtbk%3D&md5=1a3c275f859338f1f8b69f44a4257eddCAS |

Steinacher M, Joos F, Frölicher TL, Bopp L, Cadule P, Cocco V, Doney SC, Gehlen M, Lindsay K, Moore JK, Schneider B, Segschneider J (2010) Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7, 979–1005.
Projected 21st century decrease in marine productivity: a multi-model analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1Cgu7c%3D&md5=0f3d32f632036cc6223f4283fe6645eeCAS |

Sugie K, Yoshimura T (2013) Effects of pCO2 and iron on the elemental composition and cell geometry of the marine diatom Pseudo-nitzschia pseudodelicatissima (Bacillariophyceae). Journal of Phycology 49, 475–488.
Effects of pCO2 and iron on the elemental composition and cell geometry of the marine diatom Pseudo-nitzschia pseudodelicatissima (Bacillariophyceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVaisrvL&md5=0625fba50ab780b31178352f70cbd862CAS |

Sukenik A, Tchernov D, Kaplan A, Huertas E, Lubian LM, Livne A (1997) Uptake, efflux, and photosynthetic utilization of inorganic carbon by the marine eustigmatophyte Nannochloropsis Sp.1. Journal of Phycology 33, 969–974.
Uptake, efflux, and photosynthetic utilization of inorganic carbon by the marine eustigmatophyte Nannochloropsis Sp.1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVyrsg%3D%3D&md5=fa2d085fb016a7a64c33d6fc0b963c52CAS |

Sültemeyer D, Schmidt C, Fock HP (1993) Carbonic anhydrases in higher plants and aquatic microorganisms. Physiologia Plantarum 88, 179–190.
Carbonic anhydrases in higher plants and aquatic microorganisms.Crossref | GoogleScholarGoogle Scholar |

Sun J, Hutchins DA, Feng Y, Seubert EL, Caron DA, Fu F-X (2011) Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries. Limnology and Oceanography 56, 829–840.
Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVKjt7s%3D&md5=7a6bb07b14683f1824425c02b93d52b4CAS |

Tatters AO, Fu F-X, Hutchins DA (2012) High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta. PLoS ONE 7, e32116
High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsVarurs%3D&md5=e476b0387da052fbdd4d56400cde650bCAS | 22363805PubMed |

Tchernov D, Hassidim M, Luz B, Sukenik A, Reinhold L, Kaplan A (1997) Sustained net CO2 evolution during photosynthesis by marine microorganisms. Current biology 723–728.
Sustained net CO2 evolution during photosynthesis by marine microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntVKltb8%3D&md5=7572469990b33914ea80e4efd2cb3274CAS | 9368754PubMed |

Torstensson A, Chierici M, Wulff A (2012) The influence of increased temperature and carbon dioxide levels on the benthic/sea ice diatom Navicula directa. Polar Biology 35, 205–214.
The influence of increased temperature and carbon dioxide levels on the benthic/sea ice diatom Navicula directa.Crossref | GoogleScholarGoogle Scholar |

Tortell PD, Rau GH, Morel FMM (2000) Inorganic carbon acquisition in coastal Pacific phytoplankton communities. Limnology and Oceanography 45, 1485–1500.
Inorganic carbon acquisition in coastal Pacific phytoplankton communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFymtrc%3D&md5=ae173ab6771bc48919182efeae1ca9b8CAS |

Tortell PD, Payne CD, Li YY, Trimborn S, Rost B, Smith WO, Riesselman C, Dunbar RB, Sedwick P, DiTullio GR (2008) CO2 sensitivity of Southern Ocean phytoplankton. Geophysical Research Letters 35, L04605
CO2 sensitivity of Southern Ocean phytoplankton.Crossref | GoogleScholarGoogle Scholar |

Trimborn S, Wolf-Gladrow D, Richter K-U, Rost B (2009) The effect of pCO2 on carbon acquisition and intracellular assimilation in four marine diatoms. Journal of Experimental Marine Biology and Ecology 376, 26–36.
The effect of pCO2 on carbon acquisition and intracellular assimilation in four marine diatoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVaisL0%3D&md5=1bd8d13156b78b925eaab938dc658db4CAS |

Tsuzuki M, Miyachi S (1989) The function of carbonic anhydrase in aquatic photosynthesis. Aquatic Botany 34, 85–104.
The function of carbonic anhydrase in aquatic photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXltlSltLg%3D&md5=a7b1e76cc563fa38967437b52ad67702CAS |

Veron JEN (2008) Mass extinctions and ocean acidification: biological constraints on geological dilemmas. Coral Reefs 27, 459–472.
Mass extinctions and ocean acidification: biological constraints on geological dilemmas.Crossref | GoogleScholarGoogle Scholar |

Waring J, Klenell M, Bechtold U, Underwood GJC, Baker NR (2010) Light-induced responses of oxygen photoreduction, reactive oxygen species production and scavenging in two diatom species. Journal of Phycology 46, 1206–1217.
Light-induced responses of oxygen photoreduction, reactive oxygen species production and scavenging in two diatom species.Crossref | GoogleScholarGoogle Scholar |

Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 355, 1517–1529.
Photorespiration: metabolic pathways and their role in stress protection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFKltrc%3D&md5=26a1bd7acaf46ea3a3935bef52d8cd6eCAS | 11128005PubMed |

Woodger FJ, Badger MR, Price GD (2005) Sensing of inorganic carbon limitation in Synechococcus PCC7942 is correlated with the size of the internal inorganic carbon pool and involves oxygen. Plant Physiology 139, 1959–1969.
Sensing of inorganic carbon limitation in Synechococcus PCC7942 is correlated with the size of the internal inorganic carbon pool and involves oxygen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlGmsb%2FE&md5=d1c508008e2a430417388f531e9e0b0aCAS | 16306144PubMed |

Wu Y, Gao K, Riebesell U (2010) CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences 7, 2915–2923.
CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCns7jM&md5=d2834a069c9ba917b1fba1ab67a339a7CAS |

Wu H, Cockshutt AM, McCarthy A, Campbell DA (2011) Distinctive photosystem II photoinactivation and protein dynamics in marine diatoms. Plant Physiology 156, 2184–2195.
Distinctive photosystem II photoinactivation and protein dynamics in marine diatoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOrurrP&md5=c64356fe903904d8d7fc84a2ef317141CAS | 21617029PubMed |

Wu X, Gao G, Giordano M, Gao K (2012a) Growth and photosynthesis of a diatom grown under elevated CO2; in the presence of solar UV radiation. Fundamental and Applied Limnology. Archiv fuer Hydrobiologie 180, 279–290.

Wu H, Roy S, Alami M, Green BR, Campbell DA (2012b) Photosystem II photoinactivation, repair, and protection in marine centric diatoms. Plant Physiology 160, 464–476.
Photosystem II photoinactivation, repair, and protection in marine centric diatoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlOmtL3L&md5=669376e585bd6657d978f057bd233a54CAS | 22829321PubMed |

Xu JT, Gao K (2012) Future CO2-induced ocean acidification mediates physiological performance of a green tide alga. Plant Physiology 160, 1762–1769.
Future CO2-induced ocean acidification mediates physiological performance of a green tide alga.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKmt7rK&md5=dd8da24c40c9b48d4dc7af8d8dd425c7CAS |

Yang G, Gao K (2012) Physiological responses of the marine diatom Thalassiosira pseudonana to increased pCO2 and seawater acidity. Marine Environmental Research 79, 142–151.
Physiological responses of the marine diatom Thalassiosira pseudonana to increased pCO2 and seawater acidity.Crossref | GoogleScholarGoogle Scholar | 22770534PubMed |

Zhu S-H, Green BR (2010) Photoprotection in the diatom Thalassiosira pseudonana: role of LI818-like proteins in response to high light stress. Biochimica et Biophysica Acta 1797, 1449–1457.
Photoprotection in the diatom Thalassiosira pseudonana: role of LI818-like proteins in response to high light stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFSjtL0%3D&md5=c5c4852460239ec66ca78bd5af571322CAS | 20388491PubMed |

Zou D, Gao K, Luo H (2011) Short- and long-term effects of elevated CO2 on photosynthesis and respiration in the marine macroalga Hizikia fusiformis (sargassaceae, Phaeophyta) grown at low and high N supplies. Journal of Phycology 47, 87–97.
Short- and long-term effects of elevated CO2 on photosynthesis and respiration in the marine macroalga Hizikia fusiformis (sargassaceae, Phaeophyta) grown at low and high N supplies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktF2lurg%3D&md5=ede87ab9b9f0802ccbe3c52e593b7f46CAS |