Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Validation of reference genes for real-time quantitative PCR normalisation in non-heading Chinese cabbage

Dong Xiao A B , Ning-Wen Zhang B , Jian-Jun Zhao B C , Guusje Bonnema B D and Xi-Lin Hou A D
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Crop Genetics and Germplasm Enhancement; Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.

B Laboratory of Plant Breeding, Wageningen University, The Netherlands.

C Horticultural College, Hebei Agricultural University, Baoding, Hebei, China.

D Corresponding author. Emails: guusje.bonnema@wur.nl; hxl@njau.edu.cn

Functional Plant Biology 39(4) 342-350 https://doi.org/10.1071/FP11246
Submitted: 29 October 2011  Accepted: 7 March 2012   Published: 24 April 2012

Abstract

Non-heading Chinese cabbage is an important vegetable crop that includes pak choi, caixin and several Japanese vegetables like mizuna, mibuna and komatsuna. Gene expression studies are frequently used to unravel the genetics of complex traits and in such studies the proper selection of reference genes for normalisation is crucial. We assessed the expression of 13 candidate reference genes including ACTIN, ACTIN-1, ACTIN-2, GAPDH, Tub_α, CyP, EF1-α, 18S rRNA, UBQ, UBC30, PPR, PP2A and MDH. Their expression stabilities were analysed using two programs, geNorm and NormFinder, in 20 different samples that represent four strategic groups. Results showed that no single gene was uniformly expressed in all tested samples. ACTIN and CyP are proposed as good reference genes when studying developmental stages. CyP, Tub_α and UBC30 are good reference genes when studying different tissues (from flowering to seed set). CyP and Tub_α are the most stable reference genes under biotic stress treatments using the fungi Peronospora parasitica and Alternaria brassicicola. UBC30, EF1-α and ACTIN are recommended for normalisation in abiotic stress studies, including hormone, salt, drought, cold and heath treatments. Moreover, at least five reference genes (ACTIN, CyP, UBC30, EF1-α and UBQ) are required for accurate qRT–PCR data normalisation when studying gene expression across all tested samples.

Additional keywords: Brassica rapa ssp. chinensis, gene expression, qRT-PCR, reference genes.


References

Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research 64, 5245–5250.
Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtF2mtbg%3D&md5=38648ffb83ea2668a78cde91f976a98bCAS |

Argyropoulos D, Psallida C, Spyropoulos CG (2006) Generic normalization method for real-time PCR: application for the analysis of the mannanase gene expressed in germinating tomato seed. FEBS Journal 273, 770–777.
Generic normalization method for real-time PCR: application for the analysis of the mannanase gene expressed in germinating tomato seed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitlGksr4%3D&md5=720773026ddbd80164779749deda5756CAS |

Basa B, Solti Á, Sárvári É, Tamás L (2009) Housekeeping gene selection in poplar plants under Cd-stress: comparative study for real-time PCR normalisation. Functional Plant Biology 36, 1079–1087.
Housekeeping gene selection in poplar plants under Cd-stress: comparative study for real-time PCR normalisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSgsb3L&md5=9890eab956ac1c4a2f9248f830755b18CAS |

Brunner A, Yakovlev I, Strauss S (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biology 4, 14
Validating internal controls for quantitative plant gene expression studies.Crossref | GoogleScholarGoogle Scholar |

Chen X, Truksa M, Shah S, Weselake RJ (2010) A survey of quantitative real-time polymerase chain reaction internal reference genes for expression studies in Brassica napus. Analytical Biochemistry 405, 138–140.
A survey of quantitative real-time polymerase chain reaction internal reference genes for expression studies in Brassica napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlCktb0%3D&md5=8f21bc2bdd858337e44acf57f7298d1dCAS |

Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology 139, 5–17.
Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCgur7I&md5=1f06ef1a5ac0c028d5be15bca5c8ebfcCAS |

Ding J, Jia J, Yang L, Wen H, Zhang C, Liu W, Zhang D (2004) Validation of a rice specific gene, sucrose phosphate synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes. Journal of Agricultural and Food Chemistry 52, 3372–3377.
Validation of a rice specific gene, sucrose phosphate synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslOhs7w%3D&md5=f0c0d8e2011ff4024f351ce6383e1b60CAS |

Hong S-Y, Seo P, Yang M-S, Xiang F, Park C-M (2008) Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biology 8, 112
Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR.Crossref | GoogleScholarGoogle Scholar |

Jain M, Nijhawan A, Tyagi A, Khurana J (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications 345, 646–651.
Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVert70%3D&md5=646c480d06661372995c264990623bc5CAS |

Jian B, Liu B, Bi Y, Hou W, Wu C, Han T (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Molecular Biology 9, 59

Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnology Letters 25, 1869–1872.
Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlajsLc%3D&md5=f688c64228825b00732ea376c0889e2dCAS |

Lekanne Deprez RH, Fijnvandraat AC, Ruijter JM, Moorman AFM (2002) Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. Analytical Biochemistry 307, 63–69.
Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFKht70%3D&md5=b1110db4c274248fac36142b654d11faCAS |

Løvdal T, Lillo C (2009) Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Analytical Biochemistry 387, 238–242.
Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress.Crossref | GoogleScholarGoogle Scholar |

Martínez-Beamonte R, Navarro MA, Larraga A, Strunk M, Barranquero C, Acín S, Guzman MA, Iñigo P, Osada J (2011) Selection of reference genes for gene expression studies in rats. Journal of Biotechnology 151, 325–334.
Selection of reference genes for gene expression studies in rats.Crossref | GoogleScholarGoogle Scholar |

Paolacci A, Tanzarella O, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Molecular Biology 10, 11
Identification and validation of reference genes for quantitative RT-PCR normalization in wheat.Crossref | GoogleScholarGoogle Scholar |

Qi J, Yu S, Zhang F, Shen X, Zhao X, Yu Y, Zhang D (2010) Reference gene selection for real-time quantitative polymerase chain reaction of mRNA transcript levels in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Molecular Biology Reporter 28, 597–604.
Reference gene selection for real-time quantitative polymerase chain reaction of mRNA transcript levels in Chinese cabbage (Brassica rapa L. ssp. pekinensis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGksb7F&md5=3ddb896cd278aeb17855e98f54da402aCAS |

Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters 339, 62–66.
Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1Kks70%3D&md5=8b3f48aebbb3e5584b80e0685f6e48b8CAS |

Ransbotyn V, Reusch TBH (2006) Housekeeping gene selection for quantitative real-time PCR assays in the seagrass Zosters marina subjected to heat stress. Limnology and Oceanography, Methods 4, 367–373.
Housekeeping gene selection for quantitative real-time PCR assays in the seagrass Zosters marina subjected to heat stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWltrbO&md5=0265a6f2fc1bec37bf56ae4dd35e80ccCAS |

Reid K, Olsson N, Schlosser J, Peng F, Lund S (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biology 6, 27
An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development.Crossref | GoogleScholarGoogle Scholar |

Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227, 1343–1349.
Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks1Ght7o%3D&md5=ca451f17509d1ed924522dbbc6981281CAS |

Silver N, Best S, Jiang J, Thein S (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology 7, 33
Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR.Crossref | GoogleScholarGoogle Scholar |

Singh R, Green M (1993) Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259, 365–368.
Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtF2ltr0%3D&md5=1b946413b85323251fce232492824bdfCAS |

Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Léon C, Renaudin J-P, Dédaldéchamp F, Romieu C, Delrot S, Hamdi S (2005) Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222, 832–847.
Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1emsrzL&md5=a075d6f185614bd0a18fbb2a50f5e02eCAS |

The Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics 43, 1035–1039.
The genome of the mesopolyploid crop species Brassica rapa.Crossref | GoogleScholarGoogle Scholar |

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, research0034–research0034.
Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.Crossref | GoogleScholarGoogle Scholar |

Wierschke S, Gigout S, Horn P, Lehmann TN, Dehnicke C, Bräuer AU, Deisz RA (2010) Evaluating reference genes to normalize gene expression in human epileptogenic brain tissues. Biochemical and Biophysical Research Communications 403, 385–390.
Evaluating reference genes to normalize gene expression in human epileptogenic brain tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2mtLzN&md5=fbf5369a81399c377b3069d765424ea7CAS |

Zhao J, Paulo M-J, Jamar D, Lou P, van Eeuwijk F, Bonnema G, Vreugdenhil D, Koornneef M (2007) Association mapping of leaf traits, flowering time, and phytate content in Brassica rapa. Genome 50, 963–973.
Association mapping of leaf traits, flowering time, and phytate content in Brassica rapa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWktbfJ&md5=3273f34fe315af44ef757431a9194338CAS |

Zhao J, Artemyeva A, Del Carpio DP, Basnet RK, Zhang N, Gao J, Li F, Bucher J, Wang X, Visser RG, Bonnema G (2010) Design of a Brassica rapa core collection for association mapping studies. Genome 53, 884–898.