Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH FRONT

Polyols as biomarkers and bioindicators for 21st century plant breeding

Andrew Merchant A D and Andreas A. Richter B C
+ Author Affiliations
- Author Affiliations

A Faculty of Agriculture Food and Natural Resources, University of Sydney, Suite 401 Biomedical Building, 1 Central Avenue, Australian Technology Park, Everleigh, NSW 2015, Australia.

B Department of Chemical Ecology and Ecosystem Research, University of Vienna. Althanstrasse 14 1090 Vienna, Austria.

C School of Earth and Environment, Ecosystems Research Group, University of Western Australia, Perth, WA, Australia.

D Corresponding author. Email: andrew.merchant@sydney.edu.au

Functional Plant Biology 38(12) 934-940 https://doi.org/10.1071/FP11105
Submitted: 28 April 2011  Accepted: 10 August 2011   Published: 5 October 2011

Abstract

Characterising changes in the plant metabolome is central to understanding adaptive responses to environmental change. New and improved quantitative and qualitative technologies have enabled the characterisation of plant metabolism at unprecedented scales and precision. New frontiers have therefore emerged for improving our understanding of the adaptability of plant metabolic networks. However, despite these advances, outcomes for ‘in field’ plant management remain largely based on subsets of plant metabolism due to broader scale network complexity. The synthesis and occurrence of polyols offer considerable promise as bioindicators of plant health and biomarkers for use as selective traits for plant improvement. Polyols are polyohydroxy compounds that may be either open chain (acyclic) alditols or cyclic compounds (cyclohexan-hexols), usually termed cyclitols or inositols. Here we highlight the functions of polyols in stress acclimation or amelioration and as sinks for carbon and indicate their potential for the development of integrated measures of plant function using new technologies in 21st century plant breeding.

Additional keywords: alditol, carbon partitioning, cyclitol, metabolites.


References

Adams WW, Watson AM, Mueh KE, Amiard V, Turgeon R, Ebbert V, Logan BA, Combs AF, Demmig-Adams B (2007) Photosynthetic acclimation in the context of structural constraints to carbon export from leaves. Photosynthesis Research 94, 455–466.
Photosynthetic acclimation in the context of structural constraints to carbon export from leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2ks7bE&md5=59f88d82f1230c958a6eecf8919ffddbCAS |

Allen DK, Libourel IGL, Shachar-Hill Y (2009) Metabolic flux analysis in plants: coping with complexity. Plant, Cell & Environment 32, 1241–1257.
Metabolic flux analysis in plants: coping with complexity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGhtrfJ&md5=7847e3664b0ba4351b9d771eece358f0CAS |

Andersen HD, Wang CH, Arleth L, Peters GH, Westh P (2011) Reconciliation of opposing views on membrane–sugar interactions. Proceedings of the National Academy of Sciences of the United States of America 108, 1874–1878.
Reconciliation of opposing views on membrane–sugar interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslyjsLw%3D&md5=df3e5ff850dbe238a93f8c504a205759CAS |

Araus J, Blum A, Nguyen HT, Parry MAJ, Tuberosa R (2007) Integrated approaches to sustain and improve plant production under drought stress – preface. Journal of Experimental Botany 58, iv
Integrated approaches to sustain and improve plant production under drought stress – preface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOltLg%3D&md5=99cef76782f444041ac069f38b061cdbCAS |

Bieleski RL (1982) Sugar alcohols. In ‘Encyclopedia of plant physiology’. (Eds FA Loewus, W Tanner) (Springer-Verlag: New York)

Bieleski RL (1994) Pinitol is a major carbohydrate in leaves of some coastal plants indigenous to New Zealand. New Zealand Journal of Botany 32, 73–78.

Bieleski RL, Briggs BG (2005) Taxonomic patterns in the distribution of polyols within the Proteaceae. Australian Journal of Botany 53, 205–217.
Taxonomic patterns in the distribution of polyols within the Proteaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVGjtLo%3D&md5=f458476d9e8a2ec52f37db65a29ebe2aCAS |

Bohnert HJ, Shen B (1998) Transformation and compatible solutes. Scientia Horticulturae 78, 237–260.
Transformation and compatible solutes.Crossref | GoogleScholarGoogle Scholar |

Chiou TJ, Bush DR (1998) Sucrose is a signal molecule in assimilate partitioning. Proceedings of the National Academy of Sciences of the United States of America 95, 4784–4788.
Sucrose is a signal molecule in assimilate partitioning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis1OgtL4%3D&md5=417deab7e78597f5f3b39489fde9541bCAS |

Drew DH (1984) Physiology and metabolism of cyclitols. In ‘Storage carbohydrates in vascular plants’. (Ed. DH Lewis) pp. 133–155. (Cambridge University Press: Cambridge, UK)

Eggenberger K, Frey N, Zienicke B, Siebenbrock J, Schunck T, Fischer R, Brse S, Birtalan E, Nann T, Nick P (2010) Use of nanoparticles to study and manipulate plant cells. Advanced Engineering Materials 12, B406–B412.
Use of nanoparticles to study and manipulate plant cells.Crossref | GoogleScholarGoogle Scholar |

Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics 2, 155–168.
Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVCntbw%3D&md5=5bea1283b657f85a4d1e421525aad4bbCAS |

Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Molecular Biology 48, 155–171.
Metabolomics – the link between genotypes and phenotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Kqtr0%3D&md5=c8350e85a932ce8187c3a03479c44651CAS |

Fiehn O (2004) High-throughput metabolite profiling for functional genomics. Plant & Cell Physiology 45, S7–S7.

Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nature Biotechnology 18, 1157–1161.
Metabolite profiling for plant functional genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVSmtL0%3D&md5=5b76fc2dc6ebf00146707b816fef3fa5CAS |

Ford CW (1982) Accumulation of O-methyl-inositols in water stressed Vigna species. Phytochemistry 21, 1149–1151.
Accumulation of O-methyl-inositols in water stressed Vigna species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlsF2ktLg%3D&md5=4b165defdf094ce7a15f5ecda09fdd7dCAS |

Gao ZF, Maurousset L, Lemoine R, Yoo SD, van Nocker S, Loescher W (2003) Cloning, expression, and characterisation of sorbitol transporters from developing sour cherry fruit and leaf sink tissues. Plant Physiology 131, 1566–1575.
Cloning, expression, and characterisation of sorbitol transporters from developing sour cherry fruit and leaf sink tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1SqsrY%3D&md5=e3d80fc88ddc5ca5e40ae4630fa03b86CAS |

Guo CX, Oosterhuis DM (1995) Pinitol occurrence in soybean plants as affected by temperature and plant growth regulators. Journal of Experimental Botany 46, 249–253.
Pinitol occurrence in soybean plants as affected by temperature and plant growth regulators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktVOrsLY%3D&md5=5e12c6255877657551e99bd4adb1ef3fCAS |

Halford NG, Paul MJ (2003) Carbon metabolite sensing and signalling. Plant Biotechnology Journal 1, 381–398.
Carbon metabolite sensing and signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVyisr8%3D&md5=7aa7325c6c4d1341dc6e5febf7d5097dCAS |

Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant, Cell & Environment 21, 535–553.
Dissecting the roles of osmolyte accumulation during stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltl2hu7s%3D&md5=c2f11517bfc0a34c59bd80b0ab511120CAS |

Hofmann H, Wagner I, Hoffmann O (1969) Studies on biosynthesis of cyclitols. 24. A soluble enzyme from Vinca rosea methylating myo-inositol to L-bornesitol. Hoppe-Seyler’s Zeitschrift fur Physiologische Chemie 350, 1465–1468.
Studies on biosynthesis of cyclitols. 24. A soluble enzyme from Vinca rosea methylating myo-inositol to L-bornesitol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXhvVKmug%3D%3D&md5=53632fb646e423bfdfb7c75c9627e5a4CAS |

Kindl H (1969) Biosynthesis of epimers of myo-inositol, cyclohexanepentols, cyclohexenetetrols, and C-methyl inositols. Annals of the New York Academy of Sciences 165, 615–623.

Kindl H, Hoffmann-Ostenhof O (1966) Cyclite: biosynthese, stoffwechsel und vorkommen. Fortschritte der Chemie organischer Farbstoffe 24, 313–316.

Klages K, Boldingh H, Donnison H, MacRae E (1998) Myo-inositol is the major sugar in Actinidia arguata during early fruit development. Australian Journal of Plant Physiology 25, 61–67.
Myo-inositol is the major sugar in Actinidia arguata during early fruit development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisl2qt70%3D&md5=bfc9de3cfe37c673e0f709179e66b2eeCAS |

Klages K, Boldingh H, Smith GS (1999) Accumulation of myo-inositol in Actinidia seedlings subjected to salt stress. Annals of Botany 84, 521–527.
Accumulation of myo-inositol in Actinidia seedlings subjected to salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1yhu7o%3D&md5=75f0336fa5ea05b2ef96348bd5af286aCAS |

Klepek YS, Geiger D, Stadler R, Klebl F, Landouar-Arsivaud L, Lemoine R, Hedrich R, Sauer N (2005) Arabidopsis POLYOL TRANSPORTER5, a new member of the monosaccharide transporter-like superfamily, mediates H+-symport of numerous substrates, including myo-inositol, glycerol and ribosele. The Plant Cell 17, 204–218.
Arabidopsis POLYOL TRANSPORTER5, a new member of the monosaccharide transporter-like superfamily, mediates H+-symport of numerous substrates, including myo-inositol, glycerol and ribosele.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotlantg%3D%3D&md5=9c63751da5122d0347f68a868874807bCAS |

Leakey ADB, Ainsworth EA, Bernard SM, Markelz RJC, Ort DR, Placella SA, Rogers A, Smith MD, Sudderth EA, Weston DJ, Wullschleger SD, Yuan S (2009) Gene expression profiling: opening the black box of plant ecosystem responses to global change. Global Change Biology 15, 1201–1213.
Gene expression profiling: opening the black box of plant ecosystem responses to global change.Crossref | GoogleScholarGoogle Scholar |

Lewis DH, Smith DC (1967) Sugar alcohols (polyols) in fungi and green plants. 1. Distribution, physiology and metabolism. New Phytologist 66, 143–184.
Sugar alcohols (polyols) in fungi and green plants. 1. Distribution, physiology and metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXksVSqur0%3D&md5=8fd09c7174efebce37d7d4cde9646463CAS |

Loescher W, Everard JD (2000) Regulation of sugar alcohol biosynthesis. In ‘Storage carbohydrates in vascular plants’. (Ed. DH Lewis) pp. 275–299. (Kluwer Academic: Dordrecht, The Netherlands)

Maheswari M, Varalaxmi Y, Vijayalakshmi A, Yadav SK, Sharmila P, Venkateswarlu B, Vanaja M, Saradhi PP (2010) Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biologia Plantarum 54, 647–652.
Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2lurzK&md5=1b6df0b562c6a7af360e80ac358cf1c8CAS |

McClean PE, Burridge J, Beebe S, Rao IM, Porch TG (2011) Crop improvement in the era of climate change: an integrated, multi-disciplinary approach for common bean (Phaseolus vulgaris). Functional Plant Biology 38, XXX–XXX.
Crop improvement in the era of climate change: an integrated, multi-disciplinary approach for common bean (Phaseolus vulgaris).Crossref | GoogleScholarGoogle Scholar |

Merchant A, Adams MA, Richter A, Popp M (2006a) Targeted metabolite profiling provides a functional link among eucalypt taxonomy, physiology and evolution. Phytochemistry 67, 402–408.
Targeted metabolite profiling provides a functional link among eucalypt taxonomy, physiology and evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVahug%3D%3D&md5=53a45e81c3b38a9a2766e3e9f16b6d8bCAS |

Merchant A, Tausz M, Arndt SK, Adams MA (2006b) Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant, Cell & Environment 29, 2017–2029.
Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2gsrnP&md5=45c1620953d2f52323f35ad22a49df2cCAS |

Merchant A, Ladiges PY, Adams MA (2007) Quercitol links the physiology, taxonomy and evolution of 279 eucalypt species. Global Ecology and Biogeography 16, 810–819.
Quercitol links the physiology, taxonomy and evolution of 279 eucalypt species.Crossref | GoogleScholarGoogle Scholar |

Merchant A, Tausz M, Keitel C, Adams MA (2010) Relations of sugar composition and δ13C in phloem sap to growth and physiological performance of Eucalyptus globulus (Labill). Plant, Cell & Environment 33, 1361–1368.

Moing A, Carbonne F, Zipperlin B, Svanella L, Gaudillere JP (1997) Phloem loading in peach: symplastic or apoplastic? Physiologia Plantarum 101, 489–496.
Phloem loading in peach: symplastic or apoplastic?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvFelt7Y%3D&md5=eeae369470991fd1d1ee39c145dea48eCAS |

Monson RK, Rosenstiel TN, Forbis TA, Lipson DA, Jaeger CH (2006) Nitrogen and carbon storage in alpine plants. Integrative and Comparative Biology 46, 35–48.
Nitrogen and carbon storage in alpine plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVGltbg%3D&md5=91cb24c1d7db4f597b455751d9891597CAS |

Nadwodnik J, Lohaus G (2008) Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in Plantago major, Plantago maritima, Prunus persica and Apium graveolens. Planta 227, 1079–1089.
Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in Plantago major, Plantago maritima, Prunus persica and Apium graveolens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsF2isLs%3D&md5=27e8f92192b2078d3395c273275654e0CAS |

Noiraud N, Maurousset L, Lemoine R (2001a) Identification of a mannitol transporter, AgMaT1, in celery phloem. The Plant Cell 13, 695–705.

Noiraud N, Maurousset L, Lemoine R (2001b) Transport of polyols in higher plants. Plant Physiology and Biochemistry 39, 717–728.
Transport of polyols in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvVKqsrc%3D&md5=ead45db902e0d63ce66cc8085e5c4732CAS |

Nuccio ML, Rhodes D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Current Opinion in Plant Biology 2, 128–134.
Metabolic engineering of plants for osmotic stress resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivVGlsLo%3D&md5=35eff02d3c08ec58dcc3c08b4fadb10cCAS |

Ortbauer M, Popp M (2008) Functional role of polyhydroxy compounds on protein structure and thermal stability studied by circular dichroism spectroscopy. Plant Physiology and Biochemistry 46, 428–434.
Functional role of polyhydroxy compounds on protein structure and thermal stability studied by circular dichroism spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFGksLs%3D&md5=9712f3496c5a85f179875e77443ce8d0CAS |

Orthen B, Popp M, Smirnoff N (1994) Hydroxyl radical scavenging properties of cyclitols. Proceedings of the Royal Society of Edinburgh Section B – Biological Sciences 102, 269–272.

Orthen B, Popp M, Barz W (2000) Cyclitol accumulation in suspended cells and intact plants of Cicer arietinum L. Journal of Plant Physiology 156, 40–45.

Passioura J (2007) The drought environment: physical, biological and agricultural perspectives. Journal of Experimental Botany 58, 113–117.
The drought environment: physical, biological and agricultural perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOlt7g%3D&md5=fdd92ce1cb19251aef960389caf812b8CAS |

Pate J, Arthur D (1998) Delta 13C analysis of phloem sap carbon: novel means of evaluating seasonal water stress and interpreting carbon isotope signatures of foliage and trunk wood of Eucalyptus globulus. Oecologia 117, 301–311.
Delta 13C analysis of phloem sap carbon: novel means of evaluating seasonal water stress and interpreting carbon isotope signatures of foliage and trunk wood of Eucalyptus globulus.Crossref | GoogleScholarGoogle Scholar |

Pate J, Shedley E, Arthur D, Adams M (1998) Spatial and temporal variations in phloem sap composition of plantation-grown Eucalyptus globulus. Oecologia 117, 312–322.
Spatial and temporal variations in phloem sap composition of plantation-grown Eucalyptus globulus.Crossref | GoogleScholarGoogle Scholar |

Pattanagul W, Madore MA (1999) Water deficit effects on raffinose family oligosaccharide metabolism in coleus. Plant Physiology 121, 987–993.
Water deficit effects on raffinose family oligosaccharide metabolism in coleus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns12ntbY%3D&md5=cf7d787724f79853abfe6fc634040c26CAS |

Paul MJ, Cockburn W (1989) Pinitol, a compatible solute in Mesembryanthemum crystallinum L? Journal of Experimental Botany 40, 1093–1098.
Pinitol, a compatible solute in Mesembryanthemum crystallinum L?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXjtlCisA%3D%3D&md5=9850783692a1e67b966cfb76b3a07f1dCAS |

Paul MJ, Driscoll SP (1997) Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen deficiency through source–sink imbalance. Plant, Cell & Environment 20, 110–116.
Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen deficiency through source–sink imbalance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsV2msLY%3D&md5=f6473595368e80f3d879a940e5ddae81CAS |

Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. Journal of Experimental Botany 52, 1383–1400.
Sink regulation of photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVCmtLo%3D&md5=c02474b5cb5069b4b76d7137bd80c627CAS |

Pfundner G (1993) ‘Vergleichende Untersuchungen zum Inhaltsstoffmuster neuweltlicher Trocken- und Salzpflanzen.’ (Comparison of metabolite patterns of plants from arid or saline habitats of the new world). (University of Vienna: Vienna)

Plouvier V (1963) Distribution of aliphatic polyols and cyclitols. In ‘Chemical plant taxonomy’. (Ed. T Swain) pp. 313–336. (Academic Press: London)

Pommerrenig B, Papini-Terzi FS, Sauer N (2007) Differential regulation of sorbitol and sucrose loading into the phloem of Plantago major in response to salt stress. Plant Physiology 144, 1029–1038.
Differential regulation of sorbitol and sucrose loading into the phloem of Plantago major in response to salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvValtLs%3D&md5=cad5ef64980cfa96c7619ef6b9175993CAS |

Popp M, Smirnoff N (1995) Polyol accumulation and metabolism during water deficit. In ‘Environment and Metabolism Flexibility and Acclimation – Environmental Plant Biology’. (Ed. N Smirnoff) pp. 199–214. (Bioscientific Publishers Ltd: Oxford)

Popp M, Lied W, Bierbaum U, Gross M, Grosse-Schulte T, Hams S, Oldenettel J, Schuler S, Wiese J (1997) Cyclitols – stable osmotica in trees. In ‘Trees – Contributions to Modern Tree Physiology’. (Eds H Rennenberg, W Eschrich, H Ziegler) pp. 257–270. (Backhuys Publishers Leiden, The Netherlands)

Prabhavathi V, Yadav JS, Kumar PA, Rajam MV (2002) Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannitol phosphodehydrogenase gene. Molecular Breeding 9, 137–147.
Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannitol phosphodehydrogenase gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xltlems7c%3D&md5=bc4121a7deea7301e14b99684138e797CAS |

Ramsperger-Gleixner M, Geiger D, Hedrich R, Sauer N (2004) Differential expression of sucrose transporter and polyol transporter genes during maturation of common plantain companion cells. Plant Physiology 134, 147–160.
Differential expression of sucrose transporter and polyol transporter genes during maturation of common plantain companion cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVagur0%3D&md5=9affa4a6eba2561de0fd9be321821c91CAS |

Richter A, Popp M (1992) The physiological importance of accumulation of cyclitols in Viscum album L. New Phytologist 121, 431–438.
The physiological importance of accumulation of cyclitols in Viscum album L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsVymtLY%3D&md5=c27305f8a7692a72045ca24f64ccf2f4CAS |

Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metabolic Engineering 4, 49–56.
Metabolic engineering of osmoprotectant accumulation in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVSqsg%3D%3D&md5=899d1837afbc9491b1d1ab274509f16eCAS |

Schwender J (2008) Metabolic flux analysis as a tool in metabolic engineering of plants. Current Opinion in Biotechnology 19, 131–137.
Metabolic flux analysis as a tool in metabolic engineering of plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslKis7k%3D&md5=6d8ef2b296039b5201faa67cc8144d87CAS |

Schwender J, Ohlrogge J, Shachar-Hill Y (2004) Understanding flux in plant metabolic networks. Current Opinion in Plant Biology 7, 309–317.
Understanding flux in plant metabolic networks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVamsLo%3D&md5=8f97f056675f3a2ca11cef440899cee4CAS |

Shen B, Jensen RG, Bohnert HJ (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiology 113, 1177–1183.
Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1Gltb8%3D&md5=b32876456660adf71b8f5497e5a7da3fCAS |

Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiology 115, 1211–1219.

Sickler CM, Edwards GE, Kiirats O, Gao ZF, Loescher W (2007) Response of mannitol-producing Arabidopsis thaliana to abiotic stress. Functional Plant Biology 34, 382–391.
Response of mannitol-producing Arabidopsis thaliana to abiotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFOlur8%3D&md5=370fdab0c8004afafb0793eec82c6a23CAS |

Smith AM, Stitt M (2007) Co-ordination of carbon supply and plant growth. Plant, Cell & Environment 30, 1126–1149.
Co-ordination of carbon supply and plant growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVeiurrJ&md5=71d7d6930da1fb00b7c16b9f072f8eb5CAS |

Stitt M, Lunn J, Usadel B (2010) Arabidopsis and primary photosynthetic metabolism – more than the icing on the cake. The Plant Journal 61, 1067–1091.
Arabidopsis and primary photosynthetic metabolism – more than the icing on the cake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFKntLw%3D&md5=d23d64c1b4a48997e82fa57e2dd45229CAS |

Streeter JG (1985) Identification and distribution of ononitol in nodules of Pisum sativum and Glycine max. Phytochemistry 24, 174–176.
Identification and distribution of ononitol in nodules of Pisum sativum and Glycine max.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXpt12qtQ%3D%3D&md5=8b9c8b8a3c4e89371279b7c056828dc6CAS |

Streeter JG, Lohnes DG, Fioritto RJ (2001) Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant, Cell & Environment 24, 429–438.
Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFyjtLg%3D&md5=7440cc7d121a6627938819a5ed73a9f7CAS |

Sulpice R, Pyl ET, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, Gibon Y, Usadel B, Poree F, Conceição Piques M, Von Korff M, Steinhauser MC, Keurentjes JJB, Guenther M, Hoehne M, Selbig J, Fernie AR, Altmann T, Stitt M (2009) Starch as a major integrator in the regulation of plant growth. Proceedings of the National Academy of Sciences of the United States of America 106, 10348–10353.
Starch as a major integrator in the regulation of plant growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot1Giu7c%3D&md5=a071cce205f4e53ef5c4d5790d639d00CAS |

Sweetlove LJ, Last RL, Fernie AR (2003) Predictive metabolic engineering: a goal for systems biology. Plant Physiology 132, 420–425.
Predictive metabolic engineering: a goal for systems biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslers7Y%3D&md5=b1f8fb922227ee9993f67a45da4e6090CAS |

Sweetlove LJ, Fell D, Fernie AR (2008) Getting to grips with the plant metabolic network. Biochemical Journal 409, 27–41.
Getting to grips with the plant metabolic network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVantLfP&md5=359800e27a7ff94fc46c3c9c85ed148eCAS |

Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259, 508–510.
Stress protection of transgenic tobacco by production of the osmolyte mannitol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXpvVaktA%3D%3D&md5=d5a6549335afba22805cdb5faab06b2eCAS |

Teo G, Suziki Y, Uratsu SL, Lampinen B, Ormonde N, Hu WK, DeJong TM, Dandekar AM (2006) Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality. Proceedings of the National Academy of Sciences of the United States of America 103, 18842–18847.
Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlahtbrI&md5=852d31033de410ec54f7d6febd34ad76CAS |

Timotiwu PB, Sakurai N (2002) Identification of mono-, oligo-, and polysaccharides secreted from soybean roots. Journal of Plant Research 115, 77–85.
Identification of mono-, oligo-, and polysaccharides secreted from soybean roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFSktr4%3D&md5=1f4074ed7af15c3cfafbec37f774d479CAS |

Trethewey R (2002) Gene function discovery via high throughput metabolite profiling. Abstracts of Papers of the American Chemical Society 224, U91–U91.

Trethewey RN (2004) Metabolite profiling as an aid to metabolic engineering in plants. Current Opinion in Plant Biology 7, 196–201.
Metabolite profiling as an aid to metabolic engineering in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslChsrs%3D&md5=792b4ad2a381070450ff56a8f3374762CAS |

Turgeon R (1996) Phloem loading and plasmodesmata. Trends in Plant Science 1, 418–423.
Phloem loading and plasmodesmata.Crossref | GoogleScholarGoogle Scholar |

Turgeon R (2000) Plasmodesmata and solute exchange in the phloem. Australian Journal of Plant Physiology 27, 521–529.
Plasmodesmata and solute exchange in the phloem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslarsrs%3D&md5=58d1569fcec0de69735e2efa665fc79aCAS |

Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (1999) Salt stress in Mesembryanthemum crystallinum L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant. Planta 207, 426–435.
Salt stress in Mesembryanthemum crystallinum L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlOgtro%3D&md5=68bd33b2f5e45ad77f03508380b7f92fCAS |

Vernon DM, Bohnert HJ (1992) Increased expression of a myo-inositol methyl transferase in Mesembryanthemum crystallinum is part of a stress response distinct from crassulacean acid metabolism induction. Plant Physiology 99, 1695–1698.
Increased expression of a myo-inositol methyl transferase in Mesembryanthemum crystallinum is part of a stress response distinct from crassulacean acid metabolism induction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsVyls70%3D&md5=e3338ed5523693a3333694119d26fec0CAS |

Vernon DM, Tarczynski MC, Jensen RG, Bohnert HJ (1993) Cyclitol production in transgenic tobacco. The Plant Journal 4, 199–205.
Cyclitol production in transgenic tobacco.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvVOhtrg%3D&md5=e0d81974fb9a1111c8b85dc45540299bCAS |

Wanek W, Richter A (1997) Biosynthesis and accumulation of D-ononitol in Vigna umbellata in response to drought stress. Physiologia Plantarum 101, 416–424.
Biosynthesis and accumulation of D-ononitol in Vigna umbellata in response to drought stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVWmur8%3D&md5=2fdad536a96c11e2441a4aaa6d8f94b0CAS |

Williamson JD, Jennings DB, Guo WW, Pharr DM, Ehrenshaft M (2002) Sugar alcohols, salt stress, and fungal resistance: polyols – multifunctional plant protection? Journal of the American Society for Horticultural Science 127, 467–473.