Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Arabidopsis and Lobelia anceps access small peptides as a nitrogen source for growth

Fiona M. Soper A , Chanyarat Paungfoo-Lonhienne A , Richard Brackin A , Doris Rentsch B , Susanne Schmidt A and Nicole Robinson A C
+ Author Affiliations
- Author Affiliations

A School of Agriculture and Food Science, University of Queensland, St Lucia, Qld 4072, Australia.

B Molecular Plant Physiology, Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland.

C Corresponding author. Email: nicole.robinson@uq.edu.au

Functional Plant Biology 38(10) 788-796 https://doi.org/10.1071/FP11077
Submitted: 26 March 2011  Accepted: 21 July 2011   Published: 16 September 2011

Abstract

While importance of amino acids as a nitrogen source for plants is increasingly recognised, other organic N sources including small peptides have received less attention. We assessed the capacity of functionally different species, annual and nonmycorrhizal Arabidopsis thaliana (L.) Heynh. (Brassicaceae) and perennial Lobelia anceps L.f. (Campanulaceae), to acquire, metabolise and use small peptides as a N source independent of symbionts. Plants were grown axenically on media supplemented with small peptides (2–4 amino acids), amino acids or inorganic N. In A. thaliana, peptides of up to four amino acid residues sustained growth and supported up to 74% of the maximum biomass accumulation achieved with inorganic N. Peptides also supported growth of L. anceps, but to a lesser extent. Using metabolite analysis, a proportion of the peptides supplied in the medium were detected intact in root and shoot tissue together with their metabolic products. Nitrogen source preferences, growth responses and shoot–root biomass allocation were species-specific and suggest caution in the use of Arabidopsis as the sole plant model. In particular, glycine peptides of increasing length induced effects ranging from complete inhibition to marked stimulation of root growth. This study contributes to emerging evidence that plants can acquire and metabolise organic N beyond amino acids.

Additional keywords: amino acids, organic nitrogen, plant nutrition.


References

Abuarghub SM, Read DJ (1988) The biology of mycorrhiza in the Ericaceae XI. The distribution of nitrogen in soil of a typical upland Callunetum with special reference to the ‘free’ amino acids. New Phytologist 108, 425–431.
The biology of mycorrhiza in the Ericaceae XI. The distribution of nitrogen in soil of a typical upland Callunetum with special reference to the ‘free’ amino acids.Crossref | GoogleScholarGoogle Scholar |

Adamczyk B, Godlewski M, Zimny J, Zimny A (2008) Wheat (Triticum aestivum) seedlings secrete proteases from the roots and, after protein addition, grow well on medium without inorganic nitrogen. Plant Biology 10, 718–724.
Wheat (Triticum aestivum) seedlings secrete proteases from the roots and, after protein addition, grow well on medium without inorganic nitrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslajsbg%3D&md5=73bac3d4f30d79b844723ac4e482d7b2CAS |

Adamczyk B, Godlewski M, Smolander A, Kitunen V (2009) Degradation of proteins by enzymes exuded by Allium porrum roots – a potentially important strategy for acquiring organic nitrogen by plants. Plant Physiology and Biochemistry 47, 919–925.
Degradation of proteins by enzymes exuded by Allium porrum roots – a potentially important strategy for acquiring organic nitrogen by plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1WlsLs%3D&md5=5af51a8f3832aedcc1b7f2f0f84b4385CAS |

Andresen L, Jonasson S, Ström L, Michelson A (2008) Uptake of pulse injected nitrogen by soil microbes and mycorrhizal and non-mycorrhizal plants in a species-diverse subarctic heath ecosystem. Plant and Soil 313, 283–295.
Uptake of pulse injected nitrogen by soil microbes and mycorrhizal and non-mycorrhizal plants in a species-diverse subarctic heath ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyjsb7M&md5=867de9f9ad94f3c29d9afdeb43c28fd0CAS |

Ashton I, Miller A, Bowman W, Suding K (2010) Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91, 3252–3260.
Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms.Crossref | GoogleScholarGoogle Scholar |

Forde BG, Walch-Liu P (2009) Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant, Cell & Environment 32, 682–693.
Nitrate and glutamate as environmental cues for behavioural responses in plant roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmslemsLo%3D&md5=1fc8522fd7d0e86b9fbb6888afd06532CAS |

Forsum O, Svennerstam H, Ganeteg U, Näsholm T (2008) Capacities and constraints of amino acid utilization in Arabidopsis. New Phytologist 179, 1058–1069.

Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296.
An Earth-system perspective of the global nitrogen cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Cqsg%3D%3D&md5=101da8304bb0a54a6da04ba4d10da034CAS |

Harrison K, Bol R, Bardgett R (2007) Preferences for different nitrogen forms by coexisting plant species and soil microbes. Ecology 88, 989–999.
Preferences for different nitrogen forms by coexisting plant species and soil microbes.Crossref | GoogleScholarGoogle Scholar |

Hawkins H-J, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant and Soil 226, 275–285.
Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVGnsQ%3D%3D&md5=9071c20587e16f34cd2c6bfa2309ec0cCAS |

Hill P, Quilliam R, DeLuca T, Farrar J, Farrell M, Roberts P, Newsham K, Hopkins D, Bardgett R, Jones D (2011) Acquisition and assimilation of nitrogen as peptide-bound and D-enantiomers of amino acids by wheat. PLoS ONE 6, e19220
Acquisition and assimilation of nitrogen as peptide-bound and D-enantiomers of amino acids by wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXls1Klu7s%3D&md5=3269711c30eab830c66abc6c0096e8f0CAS |

Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. The Plant Cell 18, 1931–1946.
Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xoslyhtb8%3D&md5=8221da1daf40e710fbe3bc317581e9f7CAS |

Isnor RA, Warman PR (1990) Amino acid composition of soil peptides chromatographed by high performance liquid chromatography on C18 and C8 columns. Biology and Fertility of Soils 10, 213–217.

Jämtgård S, Näsholm T, Huss-Danell K (2010) Nitrogen compounds in soil solutions of agricultural land. Soil Biology & Biochemistry 42, 2325–2330.
Nitrogen compounds in soil solutions of agricultural land.Crossref | GoogleScholarGoogle Scholar |

Jones DL, Kielland K (2002) Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biology & Biochemistry 34, 209–219.
Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlOq&md5=00082f99b511fdf1bccb198fdbab7ad9CAS |

Jones DL, Shannonb D, Junvee-Fortunea T, Farrarc JF (2005) Plant capture of free amino acids is maximized under high soil amino acid concentrations. Soil Biology & Biochemistry 37, 179–181.
Plant capture of free amino acids is maximized under high soil amino acid concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVKntLc%3D&md5=857b301922fdb35b86a625fd51bff46fCAS |

Keys A (1980) Synthesis and interconversion of glycine and serine. In ‘The biochemistry of plants: a comprehensive treatise. Vol. 5, Amino acids and derivatives.’ (Ed. B Miflin) pp. 359–374. (Academic Press: New York)

Kielland K (1995) Landscape patterns of free amino acids in arctic tundra soils. Biogeochemistry 31, 85–98.
Landscape patterns of free amino acids in arctic tundra soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisV2gsbk%3D&md5=def2d7b2191b20911a43ffc348b7b973CAS |

Komarova NY, Thor K, Gubler A, Meier S, Dietrich D, Weichert A, Suter Grotemeyer M, Tegeder M, Rentsch D (2008) AtPTR1 and AtPTR5 transport dipeptides in planta. Plant Physiology 148, 856–869.
AtPTR1 and AtPTR5 transport dipeptides in planta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GmtLvN&md5=3332a2fa2723cd1c7de9e37716dec016CAS |

Lambers H, Brundrett M, Raven J, Hopper S (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant and Soil 334, 11–31.
Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaqtbnJ&md5=c65a64767b58fc17abe64c3de68a0438CAS |

Lee Y-H, Foster J, Chen J, Voll LM, Weber APM, Tegeder M (2007) AAP1 transports uncharged amino acids into roots of Arabidopsis. The Plant Journal 50, 305–319.
AAP1 transports uncharged amino acids into roots of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFektbo%3D&md5=c0d5f5c464238145e1232105a2efdcdaCAS |

Lee-Ho E, Walton LJ, Reid DM, Yeung EC, Kurepin LV (2007) Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy. Canadian Journal of Botany 85, 324–330.
Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFKmtb8%3D&md5=6e572d2912657502d475a70f904e387fCAS |

Malamy J, Ryan K (2001) Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiology 127, 899–909.
Environmental regulation of lateral root initiation in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Knu70%3D&md5=3fb2aeb501896791afcf83e3c0830762CAS |

Manabe H (1992) Formation of dipeptides containing D-alanine in wild rice plants. Phytochemistry 31, 527–529.
Formation of dipeptides containing D-alanine in wild rice plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xkt1eht7Y%3D&md5=43852bae1060c034e0ee982d774ac402CAS |

Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proceedings of the National Academy of Sciences of the United States of America 93, 7623–7627.
Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFSrsL4%3D&md5=b4b5c673fa9e42dbb9821f8023d31b7dCAS |

McFarland J, Ruess R, Kielland K, Pregitzer K (2010) Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4+. Ecosystems 13, 177–193.
Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4+.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1agtrg%3D&md5=9099e42f2069fe1cdf19572af6d61c32CAS |

McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415, 68–71.
Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xkt1OmsA%3D%3D&md5=9f6bafd6cc47648b99b99ee2fece35c7CAS |

Miller AE, Bowman WD (2003) Alpine plants show species-level differences in the uptake of organic and inorganic nitrogen. Plant and Soil 250, 283–292.
Alpine plants show species-level differences in the uptake of organic and inorganic nitrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1Cisb0%3D&md5=996bc22148420b87a0c54dc1731c4fceCAS |

Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5, 62–71.
A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFemsrs%3D&md5=51fc123cd20871600e6832690c988019CAS |

Miranda M, Borisjuk L, Tewes A, Dietrich D, Rentsch D, Weber H, Wobus U (2003) Peptide and amino acid transporters are differentially regulated during seed development and germination in faba bean. Plant Physiology 132, 1950–1960.
Peptide and amino acid transporters are differentially regulated during seed development and germination in faba bean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVant7c%3D&md5=2c093fc028fcb2db270c9205a73ce491CAS |

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473–497.
A revised medium for rapid growth and bioassays with tobacco tissue cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXksFKm&md5=06c472aaff717f5157aa29da67ee5ad0CAS |

Näsholm T, Huss-Danell K, Hogberg P (2000) Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology 81, 1155–1161.

Näsholm T, Kielland K, Ganetag U (2009) Review: uptake of organic nitrogen by plants. New Phytologist 182, 31–48.
Review: uptake of organic nitrogen by plants.Crossref | GoogleScholarGoogle Scholar |

Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proceedings of the National Academy of Sciences of the United States of America 105, 4524–4529.
Plants can use protein as a nitrogen source without assistance from other organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1Wku7g%3D&md5=33b3bd4907cd7c4eb04e0dadc218d119CAS |

Paungfoo-Lonhienne C, Schenk PM, Lonhienne TGA, Brackin R, Meier S, Rentsch D, Schmidt S (2009) Nitrogen affects cluster root formation and expression of putative peptide transporters. Journal of Experimental Botany 60, 2665–2676.
Nitrogen affects cluster root formation and expression of putative peptide transporters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlGit7w%3D&md5=b736833e7c20a9bab3592bb686aec8f1CAS |

Paungfoo-Lonhienne C, Lonhienne TGA, Mudge SR, Schenk PM, Christie M, Carroll BJ, Schmidt S (2010) DNA is taken up by root hairs and pollen, and stimulates root and pollen tube growth. Plant Physiology 153, 799–805.
DNA is taken up by root hairs and pollen, and stimulates root and pollen tube growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVamtL0%3D&md5=d2f6c4daa3d54d1b05553cf99fb446a6CAS |

Persson J, Gardestrom P, Nasholm T (2006) Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris. Journal of Experimental Botany 57, 2651–2659.
Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xotl2mtL4%3D&md5=5c14bcf388589be017bfbc92ee514cd7CAS |

Rains KC, Bledsoe CS (2007) Rapid uptake of 15N-ammonium and glycine-13C, 15N by arbuscular and ericoid mycorrhizal plants native to a northern California coastal pygmy forest. Soil Biology & Biochemistry 39, 1078–1086.
Rapid uptake of 15N-ammonium and glycine-13C, 15N by arbuscular and ericoid mycorrhizal plants native to a northern California coastal pygmy forest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisl2ru7Y%3D&md5=51d1bbd601fc1ca21606ccedb2825fdfCAS |

Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47, 376–391.
Mycorrhizas in ecosystems.Crossref | GoogleScholarGoogle Scholar |

Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461, 472–475.
A safe operating space for humanity.Crossref | GoogleScholarGoogle Scholar |

Rothstein D (2009) Soil amino-acid availability across a temperate-forest fertility gradient. Biogeochemistry 92, 201–215.
Soil amino-acid availability across a temperate-forest fertility gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitlGgsrs%3D&md5=993ad00960c39b9efe0e6f4e4e25c4adCAS |

Schmidt S, Stewart GR (1999) Glycine metabolism by plant roots and its occurence in Australian plant communities. Australian Journal of Plant Physiology 26, 253–264.
Glycine metabolism by plant roots and its occurence in Australian plant communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlKhtLw%3D&md5=a79e1cbcfcafd371fff21eb0830e7c75CAS |

Schmidt S, Mason M, Sangtiean T, Stewart GR (2003) Do cluster roots of Hakea actities (Proteaceae) acquire complex organic nitrogen? Plant and Soil 248, 157–165.
Do cluster roots of Hakea actities (Proteaceae) acquire complex organic nitrogen?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFCqs78%3D&md5=f4585cd75e20e060c8e24731ebe47221CAS |

Schulten HR, Schnitzer M (1997) The chemistry of soil organic nitrogen: a review. Biology and Fertility of Soils 26, 1–15.
The chemistry of soil organic nitrogen: a review.Crossref | GoogleScholarGoogle Scholar |

Smith S, Read DJ (2008) ‘Mycorrhizal symbiosis’. 3rd edn. (Academic Press: New York)

Stacey G, Koh S, Granger C, Becker J (2002) Peptide transport in plants. Trends in Plant Science 7, 257–263.
Peptide transport in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFyns7o%3D&md5=b7e72d8732b0714b7832775ade8c30bdCAS |

Svennerstam H, Ganeteg U, Näsholm T (2008) Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5. New Phytologist 180, 620–630.
Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKms7rE&md5=68cc857e81d5f7ce93906f26adb8243cCAS |

Tegeder M, Rentsch D (2010) Uptake and partitioning of amino acids and peptides. Molecular Plant 3, 997–1011.
Uptake and partitioning of amino acids and peptides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFantLjN&md5=1bde36c97c4a4c84ff14680d81b1a6e7CAS |

Thornton B (2001) Uptake of glycine by non-mycorrhizal Lolium perenne. Journal of Experimental Botany 52, 1315–1322.
Uptake of glycine by non-mycorrhizal Lolium perenne.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVCmsL4%3D&md5=552e5d873198c18dab6bc305c0bcf0bcCAS |

Thornton B, Robinson D (2005) Uptake and assimilation of nitrogen from solutions containing multiple N sources. Plant, Cell & Environment 28, 813–821.
Uptake and assimilation of nitrogen from solutions containing multiple N sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvVaku7Y%3D&md5=bcb7f0070d566c9672f8f61516bf4421CAS |

Turnbull MH, Goodall R, Stewart GR (1995) The impact of mycorrhizal colonization upon nitrogen source utilization and metabolism in seedlings of Eucalyptus grandis Hill ex Maiden and Eucalyptus maculata Hook. Plant, Cell & Environment 18, 1386–1394.
The impact of mycorrhizal colonization upon nitrogen source utilization and metabolism in seedlings of Eucalyptus grandis Hill ex Maiden and Eucalyptus maculata Hook.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtFSrtbw%3D&md5=d3048fa1c972c4d7ff5cc32629d88e34CAS |

Vidal EA, Gutiérrez RA (2008) A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Current Opinion in Plant Biology 11, 521–529.
A systems view of nitrogen nutrient and metabolite responses in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCnsr7P&md5=48a239420c0c49c3a012e17823e10cccCAS |

Vidal E, Tamayo K, Gutiérrez R (2010) Gene networks for nitrogen sensing, signaling, and response in Arabidopsis thaliana. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 2, 683–693.
Gene networks for nitrogen sensing, signaling, and response in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVant7%2FJ&md5=337368400c76aafcedb9c3996914c1bfCAS |

Voll LM, Allaire EE, Fiene G, Weber APM (2004) The Arabidopsis phenylalanine insensitive growth mutant exhibits a deregulated amino acid metabolism. Plant Physiology 136, 3058–3069.
The Arabidopsis phenylalanine insensitive growth mutant exhibits a deregulated amino acid metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVymsro%3D&md5=8ba7960cf0f2c240f5aabe09fc30036bCAS |

Walch-Liu P, Ivaov II, Filleur S, Gan Y, Remans T, Forde BG (2006a) Nitrogen regulation of root branching. Annals of Botany 97, 875–881.
Nitrogen regulation of root branching.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFahtLg%3D&md5=39e8f1a88f9b0a0925d519aa35b72a42CAS |

Walch-Liu P, Liu L-H, Remans T, Tester M, Forde BG (2006b) Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant & Cell Physiology 47, 1045–1057.
Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar |

Warcup J (1988) Mycorrhizal associations and seedling development in Australian Lobelioideae (Campanulaceae). Australian Journal of Botany 36, 461–472.
Mycorrhizal associations and seedling development in Australian Lobelioideae (Campanulaceae).Crossref | GoogleScholarGoogle Scholar |

Warman PR, Isnor RA (1989) Evidence of peptides in low-molecular-weight fractions of soil organic matter. Biology and Fertility of Soils 8, 25–28.
Evidence of peptides in low-molecular-weight fractions of soil organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitVenug%3D%3D&md5=e57fe2e2a6c56112a991da894e99998aCAS |

Whiteside MD, Treseder KK, Atsatt PR (2009) The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology 90, 100–108.
The brighter side of soils: quantum dots track organic nitrogen through fungi and plants.Crossref | GoogleScholarGoogle Scholar |

Yamakawa S, Sakuta C, Matsubayashi Y, Sakagami Y, Kamada H, Satoh S (1998) The promotive effects of a peptidyl plant growth factor, phytosulfokine-α, on the formation of adventitious roots and expression of a gene for a root-specific cystatin in cucumber hypocotyls. Journal of Plant Research 111, 453–458.
The promotive effects of a peptidyl plant growth factor, phytosulfokine-α, on the formation of adventitious roots and expression of a gene for a root-specific cystatin in cucumber hypocotyls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVKgsL0%3D&md5=6fbe254494cf8655773daf48ad624b4fCAS |

Zhao X, Huang J, Yu H, Wang L, Xie W (2010) Genomic survey, characterization and expression profile analysis of the peptide transporter family in rice (Oryza sativa L.). BMC Plant Biology 10, 92