Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

The hyp-1 gene is not a limiting factor for hypericin biosynthesis in the genus Hypericum

Ján Košuth A , Andrija Smelcerovic B E , Thomas Borsch C , Sebastian Zuehlke B , Katja Karppinen D , Michael Spiteller B , Anja Hohtola D and Eva Čellárová A F
+ Author Affiliations
- Author Affiliations

A Institute of Biology and Ecology, P. J. Šafárik University in Košice, Mánesova 23, 041 54 Košice, Slovakia.

B Institute of Environmental Research, Technical University of Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany.

C Botanical Garden and Botanical Museum Berlin-Dahlem, and Institut of Biology/Botany, Freie Universität Berlin, Königin-Luise-Str. 6-8, 14195 Berlin, Germany.

D Department of Biology, University of Oulu, P.O.B. 3000, FIN-90014 Oulu, Finland.

E Present address: Department of Pharmacy, University of Nis, Bulevar Dr Zorana Djindjica 81, 18000 Nis, Serbia.

F Corresponding author. Email: eva.cellarova@upjs.sk

Functional Plant Biology 38(1) 35-43 https://doi.org/10.1071/FP10144
Submitted: 8 July 2010  Accepted: 18 October 2010   Published: 17 December 2010

Abstract

Biosynthesis of the hypericins that accumulate in the dark glands of some members of the genus Hypericum is poorly understood. The gene named hyp-1, isolated from Hypericum perforatum L. has been proposed as playing an important role in the final steps of hypericin biosynthesis. To study the role of this candidate gene in relation to the production of hypericins, the expression of this gene was studied in 15 Hypericum species with varying ability to synthesise hypericin. While the accumulation of hypericins and emodin, an intermediate in the respective pathway, was associated with the dark glands in the hypericin-producing species, the hyp-1 gene was expressed in all studied species regardless of whether hypericins and emodin were detected in the plants. The coding sequences of hyp-1 cDNA were isolated from all species and showed more than 86% similarity to each other. Although, in general, an increased level of the hyp-1 gene transcript was detected in hypericin-producing species, several of the hypericin-lacking species expressed comparable levels as well. Our results question the role of the hyp-1 gene product as a key enzyme responsible for biosynthesis of hypericins in the genus Hypericum. The function of the hyp-1 gene may not be restricted to hypericin biosynthesis only, or some additional factors are necessary for completion of hypericin biosynthesis.

Additional keywords: black nodules, gene expression, naphthodianthrones, secondary metabolites, St. John’s Wort.


References

Ayan AK, Radušiene J, Cirak C, Ivanauskas L, Janulis V (2009) Secondary metabolites of Hypericum scabrum and Hypericum bupleuroides. Pharmaceutical Biology 47, 847–853.
Secondary metabolites of Hypericum scabrum and Hypericum bupleuroides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVCns7zF&md5=af9b44d3fb9929d93393178b06635aceCAS |

Bais HP, Vepachedu R, Lawrence CB, Stermitz FR, Vivanco JM (2003) Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s Wort (Hypericum perforatum L.). The Journal of Biological Chemistry 278, 32413–32422.
Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s Wort (Hypericum perforatum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVOmt70%3D&md5=500adbfa7d883f439f6f69fa77f6d766CAS | 12799379PubMed |

Briskin DP, Gawienowski MC (2001) Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum. Plant Physiology and Biochemistry 39, 1075–1081.
Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1aru7w%3D&md5=e0e42d5c475caaea9d15e9856129c04dCAS |

Çirak C, Radušiene J, Janulis V, Ivanauskas L, Arslan B (2007) Chemical constituents of some Hypericum species growing in Turkey. Journal of Plant Biology 50, 632–635.
Chemical constituents of some Hypericum species growing in Turkey.Crossref | GoogleScholarGoogle Scholar |

Crockett SL, Schaneberg B, Khan IA (2005) Phytochemical profiling of new and old world Hypericum (St. John’s Wort) species. Phytochemical Analysis 16, 479–485.
Phytochemical profiling of new and old world Hypericum (St. John’s Wort) species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ygt77J&md5=1294be696b241d9a0af7767af468792aCAS | 16315494PubMed |

Cui XH, Chakrabarty D, Lee EJ, Paek KY (2010) Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresource Technology 101, 4708–4716.
Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1Kru7o%3D&md5=1dc655edb1782bba18e821386eb41eecCAS | 20171884PubMed |

Curtis JD, Lersten NR (1990) Internal secretory structures in Hypericum (Clusiaceae): H. perforatum L. and H. balearicum L. New Phytologist 114, 571–580.
Internal secretory structures in Hypericum (Clusiaceae): H. perforatum L. and H. balearicum L.Crossref | GoogleScholarGoogle Scholar |

Davies KM, Schwinn KE (2003) Transcriptional regulation of secondary metabolism. Functional Plant Biology 30, 913–925.
Transcriptional regulation of secondary metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVWgu7k%3D&md5=18f3d5ec4bac1dbf4332880237d9d765CAS |

Fico G, Vitalini S, Colombo N, Tome F (2006) Hypericum perforatum L., H. maculatum Crantz., H. calycinum L. and H. pulchrum L.: phytochemical and morphological studies. Natural Product Communications 1, 1129–1132.

Frey M, Schullehner K, Dick R, Fiesselmann A, Gierl A (2009) Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70, 1645–1651.
Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWls7bF&md5=2219fce01ac471726c3f8873a85efe03CAS | 19577780PubMed |

Jaakola L, Pirtilla AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberrry (Vaccinium myrtillus L.) fruit. Molecular Biotechnology 19, 201–204.
Isolation of high quality RNA from bilberrry (Vaccinium myrtillus L.) fruit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotlShsb0%3D&md5=67fc181ba68a0c7fb5b0811aad33e540CAS | 11725489PubMed |

Karppinen K, Hohtola A (2008) Molecular cloning and tissue-specific expression of two cDNAs encoding polyketide synthases from Hypericum perforatum. Journal of Plant Physiology 165, 1079–1086.
Molecular cloning and tissue-specific expression of two cDNAs encoding polyketide synthases from Hypericum perforatum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt12nurg%3D&md5=8987abfec70ce1df1616692f8f6b3644CAS | 17931742PubMed |

Karppinen K, Hokkanen J, Mattila S, Neubauer P, Hohtola A (2008) Octaketide-producing type III polyketide synthase from Hypericum perforatum is expressed in dark glands accumulating hypericins. The FEBS Journal 275, 4329–4342.
Octaketide-producing type III polyketide synthase from Hypericum perforatum is expressed in dark glands accumulating hypericins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCqtr3K&md5=2e7ef58208ccafc68a0c8cc2cc9ca0d2CAS | 18647343PubMed |

Kartnig T, Göbel I, Heydel B (1996) Production of hypericin, pseudohypericin and flavonoids in cell cultures of various Hypericum species and their chemotypes. Planta Medica 62, 51–53.
Production of hypericin, pseudohypericin and flavonoids in cell cultures of various Hypericum species and their chemotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhslWntbk%3D&md5=e27ae05cbd39d00e865ff331caca5f8dCAS | 8720388PubMed |

Koistinen KM, Soininen P, Venäläinen TA, Häyrinen Y, Laatikainen R, Peräkylä M, Tervahauta AI, Kärenlampi SO (2005) Birch PR-10c interacts with several biologically important ligands. Phytochemistry 66, 2524–2533.
Birch PR-10c interacts with several biologically important ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOhu7vF&md5=b5884338292bb774814acbe190d464c4CAS | 16246382PubMed |

Korotkova N, Schneider JV, Quandt D, Worberg A, Zizka G, Borsch T (2009) Phylogeny of the eudicot order Malpighiales: analysis of a recalcitrant clade with sequences of the petD group II intron. Plant Systematics and Evolution 282, 201–228.
Phylogeny of the eudicot order Malpighiales: analysis of a recalcitrant clade with sequences of the petD group II intron.Crossref | GoogleScholarGoogle Scholar |

Košuth J, Katkovčinová Z, Olexová P, Čellárová E (2007) Expression of the hyp-1 gene in early stages of development of Hypericum perforatum L. Plant Cell Reports 26, 211–217.
Expression of the hyp-1 gene in early stages of development of Hypericum perforatum L.Crossref | GoogleScholarGoogle Scholar | 16988829PubMed |

Kraus GA, Zhang W (1995) The synthesis and biological evaluation of hypericin analogs. Bioorganic & Medicinal Chemistry Letters 5, 2633–2636.
The synthesis and biological evaluation of hypericin analogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsF2gtrs%3D&md5=6e8552e82828a3d3e81892e4284209edCAS |

Kubin A, Wierrani F, Burner U, Alth G, Grünberger W (2005) Hypericin – the facts about a controversial agent. Current Pharmaceutical Design 11, 233–253.
Hypericin – the facts about a controversial agent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvFGquw%3D%3D&md5=0dea49e3975f1901b433ad5b2181050eCAS | 15638760PubMed |

Kusari S, Zühlke S, Borsch T, Spiteller M (2009) Positive correlations between hypericin and putative precursors detected in the quantitative secondary metabolite spectrum of Hypericum. Phytochemistry 70, 1222–1232.
Positive correlations between hypericin and putative precursors detected in the quantitative secondary metabolite spectrum of Hypericum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKmu7bK&md5=1cffb72d0c0a93e62a0f5a1b92d8e0beCAS | 19683774PubMed |

Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiologia Plantarum 18, 100–127.
Organic growth factor requirements of tobacco tissue cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXns1ajtA%3D%3D&md5=fb95decc0d3f68a7536c7bbb07a26c0bCAS |

Medina MA, Martínez-Poveda B, Amores-Sánchez MI, Quesada AR (2006) Hyperforin: more than an antidepressant bioactive compound? Life Sciences 79, 105–111.
Hyperforin: more than an antidepressant bioactive compound?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVGisrg%3D&md5=2d11256eceda2a2ef6a3840cf1aa6738CAS | 16438991PubMed |

Michalska K, Fernandes H, Sikorski M, Jaskolski M (2010) Crystal structure of Hyp-1, a St. John’s Wort protein implicated in the biosynthesis of hypericin. Journal of Structural Biology 169, 161–171.
Crystal structure of Hyp-1, a St. John’s Wort protein implicated in the biosynthesis of hypericin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaqsLc%3D&md5=29939087714a1949cf14a5f4867f6775CAS | 19853038PubMed |

Onelli E, Rivetta A, Giorgi A, Bignami M, Cocucci M, Patrignami G (2002) Ultrastructural studies on the developing secretory nodules of Hypericum perforatum. Flora 197, 92–102.

Radauer C, Lackner P, Breiteneder H (2008) The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evolutionary Biology 8, 286
The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands.Crossref | GoogleScholarGoogle Scholar | 18922149PubMed |

Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analytical Biochemistry 245, 154–160.
Product differentiation by analysis of DNA melting curves during the polymerase chain reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtlSrsbo%3D&md5=0555e865a1de1e636e8ff8224d2aad5eCAS | 9056205PubMed |

Robson NKB (1985) Studies in the genus Hypericum L. (Guttiferae). 3. Sections 1. Campylosporus to 6a. Umbraculoides. Bulletin of the Natural History Museum Botany Series 12, 163–325.

Robson NKB (1996) Studies in genus Hypericum L. (Guttiferae) 6. Sections 20. Myriandra to 28. Elodes. Bulletin of the Natural History Museum Botany Series 26, 75–217.

Robson NKB (2001) Studies in the genus Hypericum L. (Guttiferae). 4 (1). Sections 7. Roscyna to 9. Hypericum sensu lato (part 1). Bulletin of the Natural History Museum Botany Series 31, 37–88.

Robson NBK (2003) Hypericum botany. In ‘The genus Hypericum’. (Ed. E Ernst) pp. 1–22. (Francis & Taylor: London)

Smelcerovic A, Zuehlke S, Spiteller M, Raabe N, Özen T (2008) Phenolic constituents of 17 Hypericum species from Turkey. Biochemical Systematics and Ecology 36, 316–319.
Phenolic constituents of 17 Hypericum species from Turkey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFOqsL4%3D&md5=84de8290c15d835d71729bf6ee07bbbfCAS |

Zobayed SMA, Afreen F, Goto E, Kozai T (2006) Plant–environment interactions: accumulation of hypericin in dark glands of Hypericum perforatum. Annals of Botany 98, 793–804.
Plant–environment interactions: accumulation of hypericin in dark glands of Hypericum perforatum.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28rntVCktg%3D%3D&md5=080a17a8816788595313e28d45347f22CAS | 16891333PubMed |