Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Model-based analysis of sugar accumulation in response to source–sink ratio and water supply in grape (Vitis vinifera) berries

Zhan Wu Dai A , Philippe Vivin A D , Thierry Robert A , Sylvie Milin A , Shao Hua Li C and Michel Génard B
+ Author Affiliations
- Author Affiliations

A INRA, UMR 1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne, Institut des Sciences de la Vigne et du Vin (ISVV Bordeaux), 210 Chemin de Leysotte, 33882 Villenave d’Ornon cedex, France.

B INRA, UR 1115 Plantes et Systèmes de Culture Horticoles, Domaine St Paul, Site Agroparc, 84914 Avignon cedex 9, France.

C Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan 430074, China.

D Corresponding author. Email: vivin@bordeaux.inra.fr

Functional Plant Biology 36(6) 527-540 https://doi.org/10.1071/FP08284
Submitted: 4 November 2008  Accepted: 11 March 2009   Published: 1 June 2009

Abstract

The dynamics of sugar (hexose) concentration in ripening grape berries (Vitis vinifera L.) were simulated with a refined mechanistic model. Changes in sugar concentration were reproduced by the sum of sugar import (S), sugar metabolism (M) and water budget (W). S and W were derived from model inputs of fresh and dry mass, and M was simulated with a relative metabolism rate describing the depletion of hexose. The relative metabolism rate was associated with the relative growth rate of dry mass with a coefficient (k) that was constant for a given cultivar under various growth conditions (temperature, water supply, and source–sink ratio) but varied with genotype. The k value was ~20% higher for cv. Merlot than for cv. Cabernet Sauvignon, indicating more imported sugars would be depleted by Merlot than Cabernet Sauvignon. The model correctly simulated the negative effect of lowered leaf-to-fruit  ratio and the positive effect of water shortage on sugar concentration. Sensitivity analysis revealed that the present model was weakly sensitive to k because of sugar accumulation being predominantly controlled by S, with M relatively small (~20%) with respect to the increment of sugar concentration. Model simulation indicated that the decreasing leaf-to-fruit ratio reduced S more than M and W, causing a net decrease in sugar concentration. In contrast, the water shortage decreased S less than M and W, resulting in a net increase in sugar concentration.

Additional keywords: modelling, sugar concentration, water supply.


Acknowledgements

We thank Dr Lionel Delbac of UMR INRA-ENITAB Santé Végétale, INRA Bordeaux, for providing field-grown grapevines, and Prof. Serge Delrot of UMR EGFV for valuable comments. We thank Marta Tanrikulu for English improving of an earlier version of this manuscript, and gratefully acknowledge anonymous reviewers’ valuable comments.


References


Candolfi-Vasconcelos MC, Candolfi MP, Koblet W (1994) Retranslocation of carbon reserves from the woody storage tissues into the fruit as a response to defoliation stress during the ripening period in Vitis vinifera L. Planta 192, 567–573.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Choné X, van Leeuwen C, Dubourdieu D, Gaudillère JP (2001) Stem water potential is a sensitive indicator of grapevine water status. Annals of Botany 87, 477–483.
Crossref | GoogleScholarGoogle Scholar | open url image1

Conde BC, Silva P, Fontes N, Dias ACP, Tavares RM, Sousa MJ, Agasse A, Delrot S, Geros H (2007) Biochemical changes throughout grape berry development and fruit and wine quality. Food 1, 1–22. open url image1

Coombe BG (1987) Distribution of solutes within the developing grape berry in relation to its morphology. American Journal of Enology and Viticulture 38, 120–127.
CAS |
open url image1

Coombe BG (1992) Research on development and ripening of the grape berry. American Journal of Enology and Viticulture 43, 101–110. open url image1

Coombe BG , Iland PG (2004) Grape berry development and winegrape quality. In ‘Viticulture’. (Eds PR Dry, BG Coombe) pp. 210–225. (Winetitles Pty: Adelaide)

Coombe BG, Bovio M, Schneider A (1987) Solute accumulation by grape pericarp cells V. relationship to berry size and the effects of defoliation. Journal of Experimental Botany 38, 1789–1798.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dai ZW, Vivin P, Génard M (2008) Modelling the effects of leaf-to-fruit ratio on dry and fresh mass accumulation in ripening grape berries. Acta Horticulturae 803, 283–291.
CAS |
open url image1

Davies C, Robinson SP (1996) Sugar accumulation in grape berries. Plant Physiology 111, 275–283.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8, 429–470.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dreier LP, Stoll GS, Ruffner HP (2000) Berry ripening and evapotranspiration in Vitis vinifera L. American Journal of Enology and Viticulture 51, 340–346. open url image1

Esteban MA, Villanueva MJ, Lissarrague JR (1999) Effect of irrigation on changes in berry composition of tempranillo during maturation. Sugars, organic acids, and mineral elements. American Journal of Enology and Viticulture 50, 418–434. open url image1

Famiani F, Walker RP, Técsi L, Chen Z-H, Proietti P, Leegood RC (2000) An immunohistochemical study of the compartmentation of metabolism during the development of grape (Vitis vinifera L.) berries. Journal of Experimental Botany 51, 675–683.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Génard M, Souty M (1996) Modeling the peach sugar contents in relation to fruit growth. Journal of the American Society for Horticultural Science 121, 1122–1131. open url image1

Génard M, Lescourret F, Gomez L, Habib R (2003) Changes in fruit sugar concentration in response to assimilate supply, metabolism and dilution: a model approach applied to peach fruit (Prunus persica). Tree Physiology 23, 373–385.
PubMed |
open url image1

Génard M, Bertin N, Borel C, Bussieres P, Gautier H , et al. (2007) Towards a virtual fruit focusing on quality: modelling features and potential uses. Journal of Experimental Botany 58, 917–928.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Georgelis N, Scott JW, Baldwin EA (2004) Relationship of tomato fruit sugar concentration with physical and chemical traits and linkage of RAPD markers. Journal of the American Society for Horticultural Science 129, 839–845.
CAS |
open url image1

Gomez L, Bancel D, Rubio E, Vercambre G (2007) The microplate reader: an efficient tool for the separate enzymatic analysis of sugars in plant tissues – validation of a micro-method. Journal of the Science of Food and Agriculture 87, 1893–1905.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Greenspan MD, Schultz HR, Matthews MA (1996) Field evaluation of water transport in grape berries during water deficits. Physiologia Plantarum 97, 55–62.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Gutierrez AP, Williams DW, Kido H (1985) A model of grape growth and development: the mathematical structure and biological considerations. Crop Science 25, 721–728. open url image1

Hayes MA, Davies C, Dry IB (2007) Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. Journal of Experimental Botany 58, 1985–1997.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Keller M, Mills LJ, Wample RL, Spayd SE (2005) Cluster thinning effects on three deficit-irrigated Vitis vinifera cultivars. American Journal of Enology and Viticulture 56, 91–103. open url image1

Keller M, Smith JP, Bondada BR (2006) Ripening grape berries remain hydraulically connected to the shoot. Journal of Experimental Botany 57, 2577–2587.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Keller M, Smithyman RP, Mills LJ (2008) Interactive effects of deficit irrigation and crop load on Cabernet Sauvignon in an arid climate. American Journal of Enology and Viticulture 59, 221–234. open url image1

Kliewer WM (1966) Sugars and organic acids of Vitis vinifera. Plant Physiology 41, 923–931.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kliewer WM, Dokoozlian NK (2005) Leaf area/crop weight ratios of grapevines: influence on fruit composition and wine quality. American Journal of Enology and Viticulture 56, 170–180. open url image1

Kobashi K, Gemma H, Iwahori S (2000) Abscisic acid content and sugar metabolism of peaches grown under water stress. Journal of the American Society for Horticultural Science 125, 425–428.
CAS |
open url image1

Kobayashi K, Salam MU (2000) Comparing simulated and measured values using mean squared deviation and its components. Agronomy Journal 92, 345–352.
Crossref | GoogleScholarGoogle Scholar | open url image1

Krasnow M, Matthews M, Shackel K (2008) Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development. Journal of Experimental Botany 59, 849–859.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lang A, Düring H (1991) Partitioning control by water potential gradient: evidence for compartmentation breakdown in grape berries. Journal of Experimental Botany 42, 1117–1122.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lescourret F, Génard M (2005) A virtual peach fruit model simulating changes in fruit quality during the final stage of fruit growth. Tree Physiology 25, 1303–1315.
CAS | PubMed |
open url image1

Liu HF, Wu BH, Fan PG, Li SH (2006) Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. Journal of the Science of Food and Agriculture 86, 1526–1536.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Liu HF, Wu BH, Fan PG, Xu HY, Li SH (2007) Inheritance of sugars and acids in berries of grape (Vitis vinifera L.). Euphytica 153, 99–107.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Malundo TMM, Shewfelt RL, Ware GO, Baldwin EA (2001) Sugars and acids influence flavor properties of mango (Mangifera indica). Journal of the American Society for Horticultural Science 126, 115–121.
CAS |
open url image1

Matthews MA , Shackel KA (2005) Growth and water transport in fleshy fruit. In ‘Vascular transport in plants’. (Eds NM Holbrook, MA Zwieniecki) pp. 181–197. (Elsevier Academic Press: Boston)

Monod H , Naud C , Makowski D (2006) Uncertainty and sensitivity analysis for crop models. In ‘Working with dynamic crop models’. (Eds D Wallach, D Makowski, JW Jones) pp. 55–96. (Elsevier: Oxford)

Motulsky HJ , Christopoulos A (2003) Comparing models using the extra sum-of-squares F test. In ‘Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting’. (Eds HJ Motulsky, A Christopoulos) pp. 138–142. (GraphPad Software Inc.: San Diego, CA)

Nunan KJ, Sims IM, Bacic A, Robinson SP, Fincher GB (1998) Changes in cell wall composition during ripening of grape berries. Plant Physiology 118, 783–792.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Nuzzo V, Matthews MA (2006) Response of fruit growth and ripening to crop level in dry-farmed Cabernet Sauvignon on four rootstocks. American Journal of Enology and Viticulture 57, 314–324. open url image1

Ollat N, Gaudillere JP (1998) The effect of limiting leaf area during stage I of berry growth on development and composition of berries of Vitis vinifera L. cv. Cabernet Sauvignon. American Journal of Enology and Viticulture 49, 251–258.
CAS |
open url image1

Ollat N, Gaudillere JP (2000) Carbon balance in developing grapevine berries. Acta Horticulturae 526, 345–350. open url image1

Petrie PR, Trought MCT, Howell GS (2000) Fruit composition and ripening of Pinot Noir (Vitis vinifera L.) in relation to leaf area. Australian Journal of Grape and Wine Research 6, 46–51.
Crossref | GoogleScholarGoogle Scholar | open url image1

Poni S, Palliotti A, Bernizzoni F (2006) Calibration and evaluation of a STELLA software-based daily CO2 balance model in Vitis vinifera L. Journal of the American Society for Horticultural Science 131, 273–283.
CAS |
open url image1

Quilot B, Génard M, Kervella J, Lescourret F (2004) Analysis of genotypic variation in fruit flesh total sugar content via an ecophysiological model applied to peach. Theoretical and Applied Genetics 109, 440–449.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ristic R, Iland PG (2005) Relationships between seed and berry development of Vitis vinifera L. cv. Shiraz: developmental changes in seed morphology and phenolic composition. Australian Journal of Grape and Wine Research 11, 43–58.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Robinson SP, Davies C (2000) Molecular biology of grape berry ripening. Australian Journal of Grape and Wine Research 6, 175–188.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Roby G, Matthews MA (2004) Relative proportions of seed, skin, and flesh, in ripe berries from Cabernet Sauvignon grapevines grown in a vineyard either well irrigated or under water deficit. Australian Journal of Grape and Wine Research 10, 74–82.
Crossref | GoogleScholarGoogle Scholar | open url image1

Roby G, Harbertson JF, Adams DA, Matthews MA (2004) Berry size and vine water deficits as factors in winegrape composition: anthocyanins and tannins. Australian Journal of Grape and Wine Research 10, 100–107.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Ruffner HP (1982) Metabolism of tartaric and malic acids in Vitis: a review Part B. Vitis 21, 346–358.
CAS |
open url image1

Sadras VO, McCarthy MG (2007) Quantifying the dynamics of sugar concentration in berries of Vitis vinifera cv. Shiraz: a novel approach based on allometric analysis. Australian Journal of Grape and Wine Research 13, 66–71.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Sadras VO, Stevens RM, Pech JM, Taylor EJ, Nicholas PR, McCarthy MG (2007) Quantifying phenotypic plasticity of berry traits using an allometric-type approach: a case study on anthocyanins and sugars in berries of Cabernet Sauvignon. Australian Journal of Grape and Wine Research 13, 72–80.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Sadras VO, Collins M, Soar CJ (2008) Modelling variety-dependent dynamics of soluble solids and water in berries of Vitis vinifera. Australian Journal of Grape and Wine Research 14, 250–259. open url image1

Santesteban LG, Royo JB (2006) Water status, leaf area and fruit load influence on berry weight and sugar accumulation of cv. ‘Tempranillo’ under semiarid conditions. Scientia Horticulturae 109, 60–65.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Schlosser J, Olsson N, Weis M, Reid K, Peng F, Lund S, Bowen P (2008) Cellular expansion and gene expression in the developing grape (Vitis vinifera L.). Protoplasma 232, 255–265.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sivilotti P, Bonetto C, Paladin M, Peterlunger E (2005) Effect of soil moisture availability on Merlot: from leaf water potential to grape composition. American Journal of Enology and Viticulture 56, 9–18. open url image1

Struik PC, Yin X, de Visser P (2005) Complex quality: now time to model. Trends in Plant Science 10, 513–516.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Swanson CA, Elshishiny EDH (1958) Translocation of sugars in the Concord grape. Plant Physiology 33, 33–37.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Tarter ME, Keuter SE (2005) Effect of rachis position on size and maturity of Cabernet Sauvignon berries. American Journal of Enology and Viticulture 56, 86–89. open url image1

Tarter ME, Keuter SE (2008) Shoot-based sampling of Vitis vinifera clusters. American Journal of Enology and Viticulture 59, 55–60. open url image1

van Leeuwen C, Seguin G (1994) Incidences de l’alimentation en eau de la vigne, appreciée par l’état hydrique du feuillage, sur le développement de l’appareil végétatif et la maturation du raisin (Vitis vinifera var. ‘Cabernet Franc’). Journal International des Sciences de la Vigne et du Vin 28, 81–110. open url image1

Venables WN , Ripley BD (2002) Non-linear and smooth regression. In ‘Modern applied statistics with S’. (4th edn) (Eds WN Venables and BD Ripley) pp. 230–232. (Springer-Verlag: New York)

Vivin P, Castelan-Estrada M, Gaudillere JP (2003) Seasonal changes in chemical composition and construction costs of grapevine tissues. Vitis 42, 5–12. open url image1

Wada H, Shackel KA, Matthews MA (2008) Fruit ripening in Vitis vinifera: apoplastic solute accumulation accounts for pre-veraison turgor loss in berries. Planta 227, 1351–1361.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Wallach D (2006) Evaluating crop models. In ‘Working with dynamic crop models’. (Eds D Wallach, D Makowski, JW Jones) pp. 11–46. (Elsevier: Oxford)

Wang ZP, Deloire A, Carbonneau A, Federspiel B, Lopez F (2003) An in vivo experimental system to study sugar phloem unloading in ripening grape berries during water deficiency stress. Annals of Botany 92, 523–528.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wu B, Quilot B, Kervella J, Génard M, Li S (2003) Analysis of genotypic variation of sugar and acid contents in peaches and nectarines through the principle component analysis. Euphytica 132, 375–384.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Zhang XY, Wang XL, Wang XF, Xia GH, Pan QH, Fan RC, Wu FQ, Wu XC, Zhang DP (2006) A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiology 142, 220–232.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1