Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Impact of salinity on early reproductive physiology of tomato (Solanum lycopersicum) in relation to a heterogeneous distribution of toxic ions in flower organs

Michel Edmond Ghanem A D , Johannes van Elteren B , Alfonso Albacete C , Muriel Quinet A , Cristina Martínez-Andújar C , Jean-Marie Kinet A , Francisco Pérez-Alfocea C and Stanley Lutts A
+ Author Affiliations
- Author Affiliations

A Groupe de Recherche en Physiologie Végétale, Université catholique de Louvain, Croix du Sud 5, boîte 13, B-1348 Louvain-la-Neuve, Belgium.

B National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.

C Departamento de Nutrición Vegetal, Centro de Edafologia y Biologia Aplicada del Segura (C.E.B.A.S.), Consejo Superior de Investigaciones Cientificas (C.S.I.C.), Campus Universitario de Espinardo, 30100 Espinardo, Murcia, Spain.

D Corresponding author. Email: michel.ghanem@uclouvain.be

Functional Plant Biology 36(2) 125-136 https://doi.org/10.1071/FP08256
Submitted: 6 October 2008  Accepted: 20 November 2008   Published: 5 February 2009

Abstract

The effect of short-term treatments (10 days) by a high salt level (150 mm NaCl) on vegetative and reproductive development was investigated in tomato plants (Solanum lycopersicum L. cv. Ailsa Craig) at two developmental stages. Salinity applied during flowering transition reduced shoot biomass and delayed the appearance of the first inflorescence. Both shoot and root biomasses were reduced when salt was applied during the development of the first inflorescence. At both stages, areas of young leaves decreased and time to first anthesis increased, while total number of flowers in the first inflorescence was not affected. Flower abortion, reduction of pollen number and viability were higher when salinity was applied during inflorescence development. Na+ accumulated in all organs while K+ decreased. Laser ablation inductively coupled plasma mass spectrometry microanalysis revealed that Na+ accumulated in style, ovaries and anther intermediate layers but not in the tapetum nor in the pollen grains when salinity was applied during inflorescence development. K+ was not significantly affected in these structures. Soluble carbohydrates dramatically increased in leaves and decreased in the inflorescence under salt stress conditions. The failure of inflorescence to develop normally under salt stress can be better explained in terms of altered source–sink relationships rather than accumulation of toxic ions.

Additional keywords: carbohydrates, flowering, inflorescence, laser ablation ICP-MS, NaCl, ovary, pollen, salt stress.


Acknowledgements

The authors thank Ms Tanja Mrak, Dr Samo Hočevar, Ms Mersida Janeva and Dr Vid S. Šelih for their assistance in preparation and analysis of the tomato sample parts for LA-ICP-MS analysis. This work was supported by the ‘Fonds de la Recherche Scientifique’ F.R.S.-FNRS- Belgium (project FRFC-2456308). MEG is very grateful to the Communauté Française de Belgique for a travel grant. AA is very grateful to the CSIC (Spain) for a research grant (I3P Program). FPA thanks the Fundación Séneca de la Región de Murcia (project 03011/PI/05) and the MICINN (project CICYT-FEDER AGL2008–1733/AGR) for financial support. MQ is grateful to the F.R.S.-FNRS for the award of a research fellowship. The authors dedicate this paper to Professor Pierre Wittouck (UCL- Belgium).


References


Adams P, Ho LC (1992) The susceptibility of modern tomato cultivars to blossom end rot in relation to salinity. Journal of Horticultural Science 67, 827–839.
CAS |
open url image1

Alexander MP (1969) Differential staining of aborted and non-aborted pollen. Biotechnic and Histochemistry 44, 117–122.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Balibrea ME, Parra M, Bolarín MC, Pérez-Alfocea F (1999) Cytoplasmic sucrolytic activity controls tomato fruit growth under salinity. Australian Journal of Plant Physiology 26, 561–568.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Balibrea ME, Dell’Amico J, Bolarín MC, Pérez-Alfocea F (2000) Carbon partitioning and sucrose metabolism in tomato plants growing under salinity. Physiologia Plantarum 110, 503–511.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Balibrea ME, Cuartero J, Bolarín MC, Pérez-Alfocea F (2003) Sucrolytic activities during fruit development of Lycopersicon genotypes differing in tolerance to salinity. Physiologia Plantarum 118(1), 38–46.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bhadula SK, Sawhney VK (1989) Amylolytic activity and carbohydrate levels during the stamen ontogeny of a male fertile, and a ‘gibberellin sensitive’ male sterile mutant of tomato (Lycopersicon esculentum). Journal of Experimental Botany 40, 789–794.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Bohnert HJ, Shen B (1998) Transformation and compatible solutes. Scientia Horticulturae 78, 237–260.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiology 95, 628–635.
CAS | Crossref | PubMed |
open url image1

Caro M, Cruz V, Cuartero J, Estañ MT, Bolarín MC (1991) Salinity tolerance of normal and cherry tomato cultivars. Plant and Soil 136, 249–255.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Cayuela E, Estañ MT, Parra M, Caro M, Bolarín MC (2001) NaCl pre-treatment at the seedling stage enhances fruit yield of tomato plants irrigated with salt water. Plant and Soil 230, 231–238.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Cooper AJ (1964) A study of the development of the first inflorescence of glasshouse tomatoes. Journal of Horticultural Science 39, 92–97. open url image1

Cramer MD, Lips SH (1995) Enriched rhizosphere CO2 concentrations can ameliorate the influence of salinity on hydroponically grown tomato plants. Physiologia Plantarum 94, 425–432.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Cuartero J, Soria T (1997) Productividad de tomates cultivados en condiciones salinas. Actas de Horticultura 16, 214–221. open url image1

Cuartero J, Fernández-Muñoz R (1998) Tomato and salinity. Scientia Horticulturae 78, 83–125.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dorion S, Lalonde S, Saini HS (1996) Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiology 111, 137–145.
CAS | PubMed |
open url image1

Ekanayake IJ, Steponkus PL, de Datta SK (1990) Sensitivity of pollination to water deficits at anthesis in upland rice. Crop Science 30, 310–315. open url image1

Grunberg K, Fernández-Muñoz R, Cuartero J (1995) Growth, flowering, and quality and quantity of pollen of tomato plants grown under saline conditions. Acta Horticulturae 412, 484–489. open url image1

Guerrier G (1996) Fluxes of Na+, K+ and Cl−, and osmotic adjustment in Lycopersicon pimpinellifolium and L. esculentum during short- and long- term exposures to NaCl. Physiologia Plantarum 97, 583–591.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Hewitt JD, Marrush M (1986) Remobilization of nonstructural carbohydrates from vegetative tissues to fruits in tomato. Journal of the American Society for Horticultural Science 111, 142–145.
CAS |
open url image1

Ho LC , Grange RI , Shaw AF (1989) Source/sink regulation. In ‘Transport of photoassimilates’. (Eds DA Baker, JA Milburn) pp. 306–343. (Longman: New York)

Ho LC, Adams P, Li XZ, Shen H, Andrews J, Xu ZH (1995) Responses of Ca-efficient and Ca-inefficient tomato cultivars to salinity in plant growth, calcium accumulation and blossom-end rot. Journal of Horticultural Science 70, 909–918. open url image1

Iwai H, Hokura A, Oishi M, Chida H, Ishii T, Sakai Sh, Satoh S (2006) The gene responsible for borate cross-linking of pectin Rhamnogalacturonan-II is required for plant reproductive tissue development and fertilization. Proceedings of the National Academy of Sciences of the United States of America 103, 16592–16597.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Johnson HE, Broadhurst D, Goodacre R, Smith AR (2003) Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry 62, 919–928.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kefu Z, Munns R, King RW (1991) Abscisic acid levels in NaCl treated barley, cotton and salt bush. Australian Journal of Plant Physiology 18, 17–24.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Khan MA, Abdullah Z (2003) Salinity-sodicity induced changes in reproductive physiology of rice (Oryza sativa) under dense soil conditions. Environmental and Experimental Botany 49, 145–157.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Khatun S, Flowers TJ (1995) Effects of salinity on seed set in rice. Plant, Cell & Environment 18, 61–67.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kinet JM , Peet MM (1997) Tomato. In ‘The physiology of vegetable crops’. (Ed. HC Wien) pp. 207–258. (Commonwealth Agricultural Bureau (CAB) International: Wallingford, UK)

Lazof D, Bernstein N (1998) The NaCl-induced inhibition of shoot growth: the case for disturbed nutrition with special consideration of calcium nutrition. Advances in Botanical Research 29, 113–189.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mavrogianopoulos G, Savvas D, Vogli V (2002) Influence of NaCl-salinity imposed on half of the root system of hydroponically grown tomato on growth, yield, and tissue mineral composition. Journal of Horticultural Science & Biotechnology 77, 557–564.
CAS |
open url image1

Mizrahi Y, Taleisnik E, Kagan-Zur V, Zohas Y, Offenbach R, Matan E, Golan R (1988) A saline irrigation regime for improving tomato fruit quality without reducing yield. Journal of the American Society for Horticultural Science 113, 202–205. open url image1

Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmes and hypothesis. Plant, Cell & Environment 16, 15–24.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell & Environment 25, 239–250.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Munns R, Cramer GR (1996) Is coordination of leaf and root growth mediated by abscisic acid: Opinion. Plant and Soil 185, 33–49.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Nuez F, Prohens J, Blanca JM (2004) Relationships, origin, and diversity of Galapagos tomatoes: implications for the conservation of natural populations. American Journal of Botany 91, 86–99.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pérez-Alfocea F, Estañ MT, Santa Cruz A, Bolarín MC (1993) Effects of salinity on nitrate, total nitrogen, soluble protein and free amino acid levels in tomato plants. Journal of Horticultural Science 68, 1021–1027. open url image1

Pérez-Alfocea F, Balibrea ME, Santa Cruz A, Estañ MT (1996) Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant and Soil 180, 251–257.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pérez-Alfocea F, Balibrea ME, Alarcón JJ, Bolarín MC (2000) Composition of xylem and phloem in relation to the salt-tolerance of domestic and wild tomato species. Journal of Plant Physiology 156, 367–374. open url image1

Pressman E, Peet MM, Pharr DM (2002) The Effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Annals of Botany 90, 631–636.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Reddy PR, Goss JA (1971) Effect of salinity on pollen. I. Pollen viability as altered by increasing osmotic pressure with NaCl, MgCl2, and CaCl2. American Journal of Botany 58, 721–725.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Roitsch T, González M (2004) Function and regulation of invertases in higher plants: sweet sensations. Trends in Plant Science 9, 606–613.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Saini HS (1997) Effects of water stress on male gametophyte development in plants. Sexual Plant Reproduction 10, 67–73.
Crossref | GoogleScholarGoogle Scholar | open url image1

Santa-Cruz A, Acosta M, Rus A, Bolarín MC (1999) Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiology and Biochemistry 37, 65–71.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Santa-Cruz A, Martinez-Rodriguez MM, Pérez-Alfocea F, Romero-Aranda R, Bolarín MC (2002) The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Science 162, 825–831.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Saranga Y, Zamir D, Marani A, Rudich J (1991) Breeding tomatoes for salt tolerance: field evaluation of Lycopersicon germplasm for yield and dry-matter production. Journal of the American Society for Horticultural Science 116, 1067–1071. open url image1

Sato S, Kamiyama M, Iwata T, Makita M, Furukawa H, Ikeda H (2006) Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals of Botany 97, 731–738.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Shannon MC, Gronwald JW, Tal M (1987) Effects of salinity on growth and accumulation of organic and inorganic ions in cultivated and wild species. Journal of the American Society for Horticultural Science 112, 416–423.
CAS |
open url image1

Sheoran IS, Saini HS (1996) Drought-induced male sterility in rice: changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen. Sexual Plant Reproduction 9, 161–169.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stitt M (1991) Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant, Cell & Environment 14, 741–762.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

van Ieperen W (1996) Effects of different day and night salinity levels on vegetative growth, yield and quality of tomato. Journal of Horticultural Science 71, 99–111. open url image1

Weiss H, Maluszynska J (2001) Molecular cytogenetic analysis of polyploidization in the anther tapetum of diploid and autotetraploid Arabidopsis thaliana plants. Annals of Botany 87, 729–735.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Yemm EW, Willis J (1954) The estimation of carbohydrates in plant extracts by anthrone. The Biochemical Journal 57, 508–514.
CAS | PubMed |
open url image1

Zhao F, McGrath SP, Crosland AR (1994) Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Communications in Soil Science and Plant Analysis 25, 407–418.
CAS | Crossref |
open url image1