Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

The harvest-responsive region of the Asparagus officinalis sparagine synthetase promoter reveals complexity in the regulation of the harvest response

Donald A. Hunter A B and Lyn M. Watson A
+ Author Affiliations
- Author Affiliations

A New Zealand Institute for Crop and Food Research Limited, Private Bag 11-600, Palmerston North, New Zealand.

B Corresponding author. Email: hunterd@crop.cri.nz

Functional Plant Biology 35(12) 1212-1223 https://doi.org/10.1071/FP08161
Submitted: 5 June 2008  Accepted: 15 September 2008   Published: 16 December 2008

Abstract

The activity of a 1915-bp asparagine synthetase (AS) promoter of Asparagus officinalis L. was induced in mature leaves of transgenic Arabidopsis thaliana (L.) Heynh. plants when the leaves were detached and held in water for 24 h. To understand this induction by harvest, variants of the AS promoter were linked to the β-glucuronidase GUS reporter gene. Harvest induction in the leaves required detachment and was not simply a wound response. Two regions in the AS promoter (Region A, –640 to –523; Region B, –524 to –383) were independently able to confer harvest response to the otherwise unresponsive –383AS (minimal) promoter. Region A was studied in further detail. Various truncations, deletions, or nucleotide substitutions of Region A affected activity and fold induction of the minimal promoter. However, no harvest-inducible cis-acting element within Region A was identified. Although the minimal promoter contained a dehydration-responsive element and ACGT elements similar to ABA-responsive regulatory motifs these were not needed by the upstream regulatory regions for directing harvest response. When four copies of Region A were linked to the minimal promoter it became highly active in leaves before harvest. Deletions within Region A showed that it required its complete 117 bp for driving harvest response, yet the region cannot simply be thought of as a harvest-responsive module, since its concatemerisation led to constitutive expression.

Additional keywords: senescence, wounding.


Acknowledgements

We thank David Brummell, Kevin Davies and Huaibi Zhang for careful reading of the manuscript, Somrutai Winichayakul for kindly supplying plasmid pASP3 and transgenic Arabidopsis plants containing the –1958 AS:GUS construct, and Ian King for maintaining the Arabidopsis transgenic plants. This research was financially supported by the New Zealand Foundation for Science and Technology.


References


Akbergenov R, Zhanybekova S, Kryldakov RV, Zhigailov A, Polimbetova NS, Hohn T, Iskakov BK (2004) ARC-1, a sequence element complementary to an internal 18S rRNA segment, enhances translation efficiency in plants when present in the leader or intercistronic region of mRNAs. Nucleic Acids Research 32, 239–247.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Barnhart KM (1999) Simplified PCR-mediated, linker-scanning mutagenesis. BioTechniques 26, 624–626.
CAS | PubMed |
open url image1

Chevalier C, Bourgeois E, Just D, Raymond P (1996) Metabolic regulation of asparagine synthetase gene expression in maize (Zea mays L.) root tips. The Plant Journal 9, 1–11.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. Journal of Biological Chemistry 275, 1723–1730.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Chung HJ, Fu HY, Thomas TL (2005) Abscisic acid-inducible nuclear proteins bind to bipartite promoter elements required for ABA response and embryo-regulated expression of the carrot Dc3 gene. Planta 220, 424–433.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Davies KM, King GA (1993) Isolation and characterization of a cdna clone for a harvest-induced asparagine synthetase from Asparagus-officinalis L. Plant Physiology 102, 1337–1340.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Davies KM, Seelye JF, Irving DE, Borst WM, Hurst PL, King GA (1996) Sugar regulation of harvest-related genes in asparagus. Plant Physiology 111, 877–883.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Delessert C, Wilson IW, Van der Straeten D, Dennis ES, Dolferus R (2004) Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves. Plant Molecular Biology 55, 165–181.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiology 123, 895–904.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Gapper NE, Coupe SA, McKenzie MJ, Scott RW, Christey MC, Lill RE, McManus MT, Jameson PE (2005) Senescence-associated down-regulation of 1-aminocyclopropane-1-carboxylate (ACC) oxidase delays harvest-induced senescence in broccoli. Functional Plant Biology 32, 891–901.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Geffers R, Sell S, Cerff R, Hehl R (2001) The TATA box and a Myb binding site are essential for anaerobic expression of a maize GapC4 minimal promoter in tobacco. Biochimica et Biophysica Acta (BBA) – Gene Structure and Expression 1521, 120–125.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Geisler M, Kleczkowski LA, Karpinski S (2006) A universal algorithm for genome-wide in silicio identification of biologically significant gene promoter putative cis-regulatory-elements; identification of new elements for reactive oxygen species and sucrose signaling in Arabidopsis. The Plant Journal 45, 384–398.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hanson J, Hanssen M, Wiese A, Hendriks MMWB, Smeekens S (2008) The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. The Plant Journal 53, 935–949.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Herrera-Rodriguez MB, Maldonado JM, Perez-Vicente R (2004) Light and metabolic regulation of HAS1, HAS1.1 and HAS2, three asparagine synthetase genes in Helianthus annuus. Plant Physiology and Biochemistry 42, 511–518.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Herrera-Rodriguez MB, Maldonado JM, Perez-Vicente R (2006) Role of asparagine and asparagine synthetase genes in sunflower (Helianthus annuus) germination and natural senescence. Journal of Plant Physiology 163, 1061–1070.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Herrera-Rodriguez MB, Perez-Vicente R, Maldonado JM (2007) Expression of asparagine synthetase genes in sunflower (Helianthus annuus) under various environmental stresses. Plant Physiology and Biochemistry 45, 33–38.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Research 27, 297–300.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lam HM, Peng SS, Coruzzi GM (1994) Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiology 106, 1347–1357.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lam HM, Hsieh MH, Coruzzi G (1998) Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana. The Plant Journal 16, 345–353.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lam HM, Wong P, Chan HK, Yam KM, Chen L, Chow CM, Coruzzi GM (2003) Overexpression of the ASN1 gene enhances nitrogen status in seeds of Arabidopsis. Plant Physiology 132, 926–935.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lea PJ , Robinson SA , Stewart GR (1990) The enzymology and metabolism of glutamine, glutamate and asparagine. In ‘The Biochemistry of plants’. (Eds BJ Miflin, PJ Lea) pp. 121–159. (Academic Press: San Diego)

Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. The Plant Cell 16, 596–615.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Martinez-Trujillo M, Limones-Briones V, Cabrera-Ponce JL, Herrera-Estrella L (2004) Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Molecular Biology Reporter 22, 63–70.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Moyle RL, Davies KM, King GA, Farnden KJF (1996) Nucleotide sequence of the asparagine synthetase gene (Accession No. X99552) from Asparagus officinalis L. Plant Physiology 112, 1397.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Noh YS, Amasino RM (1999) Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Molecular Biology 41, 181–194.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Rabe E (1990) Stress physiology – the functional-significance of the accumulation of nitrogen-containing compounds. Journal of Horticultural Science 65, 231–243.
CAS |
open url image1

Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. The Plant Cell 14, 749–762.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBS, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications 290, 998–1009.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Shen QJ, Casaretto JA, Zhang P, Ho TH (2004) Functional definition of ABA-response complexes: the promoter units necessary and sufficient for ABA induction of gene expression in barley (Hordeum vulgare L.). Plant Molecular Biology 54, 111–124.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sieciechowicz KA, Joy KW, Ireland RJ (1988) The metabolism of asparagine in plants. Phytochemistry 27, 663–671.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Simier P, Delavault P, Demarsy E, Pouvreau JB, Pageau K, Le Bizec B, Fer A, Thalouarn P (2005) Characterization of an unusually regulated gene encoding asparagine synthetase in the parasitic plant Striga hermonthica (Scrophulariaceae). Physiologia Plantarum 123, 9–20.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Tilly JJ, Allen DW, Jack T (1998) The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125, 1647–1657.
CAS | PubMed |
open url image1

Tsai FY, Coruzzi G (1991) Light represses transcription of asparagine synthetase genes in photosynthetic and nonphotosynthetic organs of plants. Molecular and Cellular Biology 11, 4966–4972.
CAS | PubMed |
open url image1

Winichayakul S, Moyle RL, Ryan DJ, Farnden KJF, Davies KM, Coupe SA (2004a) Distinct cis-elements in the Asparagus officinalis asparagine synthetase promoter respond to carbohydrate and senescence signals. Functional Plant Biology 31, 573–582.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Winichayakul S, Moyle RL, Coupe SA, Davies KM, Farnden KJF (2004b) Analysis of the asparagus (Asparagus officinalis) asparagine synthetase gene promoter identifies evolutionarily conserved cis-regulatory elements that mediate Suc-repression. Functional Plant Biology 31, 63–72.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV (2007) An ‘electronic fluorescent pictograph’ browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2, e718.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wong HK, Chan HK, Coruzzi GM, Lam HM (2004) Correlation of ASN2 gene expression with ammonium metabolism in Arabidopsis. Plant Physiology 134, 332–338.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell 6, 251–264.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Science 10, 88–94.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zhang W, Ruan J, Ho TH, You Y, Yu T, Quatrano RS (2005) Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics 21, 3074–3081.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1