Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

The promoter from SlREO, a highly-expressed, root-specific Solanum lycopersicum gene, directs expression to cortex of mature roots

Matthew O. Jones A B C , Kenneth Manning B , John Andrews B , Carole Wright B , Ian B. Taylor A and Andrew J. Thompson B
+ Author Affiliations
- Author Affiliations

A Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK.

B Warwick HRI, University of Warwick, Wellesbourne, Warwick, CV35 9EF, UK.

C Corresponding author. Email: matthew.jones@rhul.ac.uk

Functional Plant Biology 35(12) 1224-1233 https://doi.org/10.1071/FP08139
Submitted: 3 May 2008  Accepted: 8 September 2008   Published: 16 December 2008

Abstract

Root-specific promoters are valuable tools for targeting transgene expression, but many of those already described have limitations to their general applicability. We present the expression characteristics of SlREO, a novel gene isolated from tomato (Solanum lycopersicum L.). This gene was highly expressed in roots but had a very low level of expression in aerial plant organs. A 2.4-kb region representing the SlREO promoter sequence was cloned upstream of the uidA GUS reporter gene and shown to direct expression in the root cortex. In mature, glasshouse-grown plants this strict root specificity was maintained. Furthermore, promoter activity was unaffected by dehydration or wounding stress but was somewhat suppressed by exposure to NaCl, salicylic acid and jasmonic acid. The predicted protein sequence of SlREO contains a domain found in enzymes of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. The novel SlREO promoter has properties ideal for applications requiring strong and specific gene expression in the bulk of tomato root tissue growing in soil, and is also likely to be useful in other Solanaceous crops.

Additional keywords: genetic engineering, over-expression, root expression, Solanaceae, 2-ODD.


Acknowledgements

We thank Carol Evered for assistance in microscopy. We are grateful to Angela Hambidge and Linda Brown for technical assistance. This work was funded by the Department for Environment, Food and Rural Affairs, UK, project HP0218.


References


Abe M, Takahashi T, Komeda Y (2001) Identification of a cis-regulatory element for L1 layer-specific gene expression, which is targeted by an L1-specific homeodomain protein. The Plant Journal 26, 487–494.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bassett CL, Callahan AM, Artlip TS, Scorza R, Srinivasan C (2007) A minimal peach type II chlorophyll a/b-binding protein promoter retains tissue-specificity and light regulation in tomato. BMC Biotechnology 7, 47.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Benfey PN, Takatsuji H, Ren L, Shah DM, Chua NH (1990) Sequence requirements of the 5-enolpyruvylshikimate-3-phosphate synthase 5′-upstream region for tissue-specific expression in flowers and seedlings. The Plant Cell 2, 849–856.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bird CR, Smith CJS, Ray JA, Moureau P, Bevan MW, Bird AS, Hughes S, Morris PC, Grierson D, Schuch W (1988) The tomato polygalacturonase gene and ripening-specific expression in transgenic plants. Plant Molecular Biology 11, 651–662.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–254.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bucher M (2002) Molecular root Bioengineering. In ‘Plant roots. The hidden half’. (3rd edn) (Eds Y Waisel, A Eshel, U Kafkafi) pp. 279–294. (Marcel Dekker Inc.: New York)

Bucher M, Schroeer B, Willmitzer L, Riesmeier JW (1997) Two genes encoding extensin-like proteins are predominantly expressed in tomato root hair cells. Plant Molecular Biology 35, 497–508.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bucher M, Brunner S, Zimmermann P, Zardi GI, Amrhein N, Willmitzer L, Riesmeier JW (2002) The expression of an extensin-like protein correlates with cellular tip growth in tomato. Plant Physiology 128, 911–923.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Butler ED, Gallagher TF (2000) Characterization of auxin-induced ARRO-1 expression in the primary root of Malus domestica. Journal of Experimental Botany 51, 1765–1766.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Cardon ZG, Gage DJ (2006) Resource exchange in the rhizosphere: molecular tools and the microbial perspective. Annual Review of Ecology Evolution and Systematics 37, 459–488.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chan YL, Prasad V, Sanjaya , Chen KH, Liu PC, Chan MT, Cheng CP (2005) Transgenic tomato plants expressing an Arabidopsis thionin (Thi2.1) driven by fruit-inactive promoter battle against phytopathogenic attack. Planta 221, 386–393.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Chen F, Ro D-K, Petri J, Gershenzon J, Bohlmann J, Pichersky E, Tholl D (2004) Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiology 135, 1956–1966.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Diatchenko L, Lau YC, Campbell AP, Chenchik A, Moqadam F , et al. (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences of the United States of America 93, 6025–6030.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Research 4, 388–396.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Fester T, Schmidt D, Lohse S, Walter MH, Giuliano G, Bramley PM, Fraser PD, Hause B, Strack D (2002) Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Planta 216, 148–154.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Garoosi GA, Salter MG, Caddick MX, Tomsett AB (2005) Characterisation of the ethanol-inducible alc gene expression system in tomato. Journal of Experimental Botany 56, 1635–1642.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Giritch A, Herbik A, Balzer HJ, Ganal M (1997) A root-specific iron-regulated gene of tomato encodes a lysyl-tRNA-synthetase-like protein. European Journal of Biochemistry 244, 310–317.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Giritch A, Ganal M, Stephan UW, Baumlein H (1998) Structure, expression and chromosomal localisation of the metallothionein-like gene family of tomato. Plant Molecular Biology 37, 701–714.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Gittins JR, Hiles ER, Pellny TK, Biricolti S, James DJ (2001) The Brassica napus extA promoter: a novel alternative promoter to CaMV 35S for directing transgene expression to young stem tissues and load bearing regions of transgenic apple trees (Malus pumila Mill). Molecular Breeding 7, 51–62.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Grichko VP, Glick BR (2001) Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiology and Biochemistry 39, 19–25.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Gubler F, Jacobsen JV (1992) Gibberellin-responsive elements in the promoter of a barley high pl- α-amylase gene. The Plant Cell 4, 1435–1441.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Molecular Biology 49, 373–385.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hans J, Hause B, Strack D, Walter MH (2004) Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-d-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize. Plant Physiology 134, 614–624.
Crossref | d
-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize.&journal=Plant Physiology&volume=134&pages=614-624&publication_year=2004&author=MH%20Walter&hl=en&doi=10.1104/pp.103.032342" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hausinger RP (2004) Fe(II)/α-ketoglutarate dependent hydroxylases and related enzymes. Critical Reviews in Biochemistry and Molecular Biology 39, 21–68.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hertig C, Rebmann G, Bull J, Mauch F, Dudler R (1991) Sequence and tissue-specific expression of a putative peroxidase gene from wheat (Triticum aestivum L.). Plant Molecular Biology 16, 171–174.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database 1999. Nucleic Acids Research 27, 297–300.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hudson ME, Quail PH (2003) Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiology 133, 1605–1616.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Itzhaki H, Maxson JM, Woodson WR (1994) An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene. Proceedings of the National Academy of Sciences of the United States of America 91, 8925–8929.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6, 3901–3907.
CAS | PubMed |
open url image1

Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science 7, 193–195.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Keller B, Baumgartner C (1991) Vascular-specific expression of the bean grp 1.8 gene is negatively regulated. The Plant Cell 3, 1051–1061.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Klinedinst S, Pascuzzi P, Redman J, Desai M, Arias J (2000) A xenobiotic-stress-activated transcription factor and its cognate target genes are preferentially expressed in root tip meristems. Plant Molecular Biology 42, 679–688.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Köck M, Stenzel I, Zimmer A (2006) Tissue-specific expression of tomato ribonuclease LX during phosphate starvation-induced root growth. Journal of Experimental Botany 57, 3717–3726.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Koyama T, Ono T, Shimizu M, Jinbo T, Mizuno R , et al. (2005) Promoter of Arabidopsis thaliana phosphate transporter gene drives root-specific expression of transgene in rice. Journal of Bioscience and Bioengineering 99, 38–42.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Krasnyanski SF, Sandu J, Domier LL, Buetow DE, Korbani SS (2001) Effect of an enhanced CAMV 35S promoter and a fruit-specific promoter on UIDA gene expression in transgenic tomato plants. In Vitro Cellular & Developmental Biology. Plant 37, 427–433.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Liedl BE, McCormick S, Mutschlerm MA (1993) A clearing technique for histochemical location of GUS activity in pollen tubes and ovules of Lycopersicon. Plant Molecular Biology Reporter 11, 194–201.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Léon-Kloosterziel KM, Verhagen BW, Keurentjes JJ, Van Pelt JA, Rep M, Van Loon LC, Pieterse CM (2005) Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle. Plant Molecular Biology 57, 731–748.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Liang M, Haroldsen V, Cai X, Wu Y (2006) Expression of a putative laccase gene, ZmLAC1, in maize primary roots under stress. Plant, Cell & Environment 29, 746–753.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Marin E, Divol F, Bechtold N, Vavasseur A, Nussaume L, Forestier C (2006) Molecular characterization of three Arabidopsis soluble ABC proteins which expression is induced by sugars. Plant Science 171, 84–90.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Matsuda J, Okabe S, Hashimoto T, Yamada Y (1991) Molecular cloning of hyoscyamine 6 β-hydroxylase, a 2- oxoglutarate- dependent dioxygenase, from cultured roots of Hyoscyamus niger. Journal of Biological Chemistry 266, 9460–9464.
CAS | PubMed |
open url image1

Mudge SR, Rae AL, Diatloff E, Smith FW (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. The Plant Journal 31, 341–353.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Mudge SR, Smith FW, Richardson AE (2003) Root-specific and phosphate regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P source. Plant Science 165, 871–878.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Okubara PA, Paulitz TC (2005) Root defense responses to fungal pathogens: a molecular perspective. Plant and Soil 274, 215–226.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Phillips AL, Ward DA, Uknes S, Appleford N, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P (1995) Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiology 108, 1049–1057.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Prescott AG, John P (1996) Dioxygenases: molecular structure and role in plant metabolism. Annual Review of Plant Physiology and Plant Molecular Biology 47, 245–271.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Prescott AG, Lloyd MD (2000) The iron(II) and 2-oxoacid-dependent dioxygenases and their role in metabolism. Natural Product Reports 17, 367–383.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Radi A, Dina P, Guy A (2006) Expression of sarcotoxin IA gene via a root-specific tob promoter enhanced host resistance against parasitic weeds in tomato plants. Plant Cell Reports 25, 297–303.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ro D, Ehlting J, Keeling CI, Lin R, Mattheus N, Bohlmann J (2006) Microarray expression profiling and functional characterization of AtTPS genes: duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)-γ-bisabolene synthases. Archives of Biochemistry and Biophysics 448, 104–116.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Saslowsky D, Winkel-Shirley B (2001) Localisation of flavonoid enzymes in Arabidopsis roots. The Plant Journal 27, 37–48.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sobeih WY, Dodd IC, Bacon MA, Grierson D, Davies WJ (2004) Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root-zone drying. Journal of Experimental Botany 55, 2353–2363.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Subramanian S, Hu X, Lu G, Odelland JT, Yu O (2004) The promoters of two isoflavone synthase genes respond differentially to nodulation and defence signals in transgenic soybean roots. Plant Molecular Biology 54, 623–639.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Suzuki H, Fowler TJ, Tierney ML (1993) Deletion analysis and localization of SbPRP1, a soybean cell wall protein gene, in roots of transgenic tobacco and cowpea. Plant Molecular Biology 21, 109–119.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Tang X, Wang H, Brandt AS, Woodson WR (1993) Organisation and structure of the 1-aminocylcopropane-1-carboxylate oxidase gene family from Petunia hybrida. Plant Molecular Biology 23, 1151–1164.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Thompson AJ, Corlett JE (1995) mRNA levels of four tomato (Lycopersicon esculentum Mill.L) genes related to fluctuating plant and soil water status. Plant, Cell & Environment 18, 773–780.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Tirajoh A, Aung TST, Byun McKay A, Plant AL (2005) Stress-responsive α-dioxygenase expression in tomato roots. Journal of Experimental Botany 56, 713–723.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Vaughan SP, James DJ, Lindsey K, Massiah AJ (2006) Characterization of FaRB7, a near root-specific gene from strawberry (Fragaria × ananassa Duch.) and promoter activity analysis in homologous and heterologous hosts. Journal of Experimental Botany 57, 3901–3910.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

von Schweinichen C, Büttner M (2005) Expression of a plant cell wall invertase in roots of Arabidopsis leads to early flowering and an increase in whole plant biomass. Plant Biology 7, 469–475.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

White PJ, Broadley MR, Hammond JP, Thompson AJ (2005) Optimising the potato root system for phosphorous and water acquisition in low-input growing systems. Aspects of Applied Biology 73, 111–118. open url image1

Xiao K, Liu J, Dewbre G, Harrison M, Wang ZY (2006) Isolation and characterization of root-specific phosphate transporter promoters from Medicago truncatula. Plant Biology 8, 439–449.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Xu W, Purugganan MM, Polisensky DH, Antiosiewicz DM, Fry SC, Braam J (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycolase. The Plant Cell 7, 1555–1567.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Yamamoto YT, Taylor CG, Acedo GN, Cheng C, Conkling MA (1991) Characterization of cis-acting sequences regulating root-specific gene expression in tobacco. The Plant Cell 3, 371–382.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. The Plant Journal 29, 465–473.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zhang Z, Gurr SJ (2000) Walking into the unknown: a ‘step down’ PCR-based technique leading to the direct sequence analysis of flanking genomic DNA. Gene 253, 145–150.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zhang P, Bohl-Zenger S, Puonti-Kaerlas J, Potrykus I, Gruissem W (2003) Two cassava promoters related to vascular expression and storage root formation. Planta 218, 192–203.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1