Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Characterisation of the gene family encoding acetoacetyl-CoA thiolase in Arabidopsis

Iván Ahumada A C , Albert Cairó A , Andréa Hemmerlin B , Víctor González A D , Irene Pateraki A , Thomas J. Bach B , Manuel Rodríguez-Concepción A D , Narciso Campos A and Albert Boronat A E
+ Author Affiliations
- Author Affiliations

A Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain.

B Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie Moléculaire des Plantes, 28 rue Goethe, 67083 Strasbourg Cedex, France.

C Present address: Universidad Autónoma de Chile-Sede Talca, Escuela de Ciencias de la Salud, 5 Poniente Número 1670, Talca, Chile.

D Present address: Centre de Recerca en Agrigenòmica (CRAG-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.

E Corresponding author. Email: aboronat@ub.edu

Functional Plant Biology 35(11) 1100-1111 https://doi.org/10.1071/FP08012
Submitted: 19 January 2008  Accepted: 30 July 2008   Published: 28 November 2008

Abstract

Thiolases are ubiquitous enzymes involved in many essential biochemical processes. Biosynthetic thiolases, also known as acetoacetyl-CoA thiolases (AACT), catalyse a reversible Claisen-type condensation of two acetyl-CoA molecules to form acetoacetyl-CoA. Here, we report the characterisation of two genes from Arabidopsis thaliana L., ACT1 and ACT2, which encode two closely related AACT isoforms (AACT1 and AACT2, respectively). Transient expression of constructs encoding AACT1 and AACT2 fused to GFP revealed that the two proteins show a different subcellular localisation. While AACT1 is found in peroxisomes, AACT2 localises in the cytosol and the nucleus. The peroxisomal localisation of AACT1 depends on the presence of a C-terminal peroxisomal targeting sequence (PTS1) motif (Ser-Ala-Leu) not previously found in other organisms. ACT1 and ACT2 genes are also differentially expressed. Whereas ACT2 is expressed at relatively high level in all plant tissues, the expression of ACT1 is restricted to roots and inflorescences and its transcript is present at very low levels. The obtained results are in agreement with the involvement of AACT2 in catalysing the first step of the mevalonate pathway. The metabolic function of AACT1 is not clear at present, although its particular peroxisomal localisation might exclude a role in isoprenoid biosynthesis.

Additional keywords: acetyl-CoA, isoprenoid biosynthesis, mevalonate pathway, peroxisome.


Acknowledgements

This work was supported by grants from the Spanish Ministerio de Educación y Ciencia (BIO2006–03704 to A.B., BFU2006–14655 to N.C. and BIO2005–00367 to M.R.C., all including FEDER funds), and the Generalitat de Catalunya (grant 2005SGR-00914). This work has been carried out within the Centre CONSOLIDER on Agrigenomics funded by the Spanish Ministry of Education and Science. I.A. was recipient of a pre-doctoral MUTIS fellowship from the Agencia Española de Cooperación International. We thank Aurora Piñas and Antonio Comaposada for their contribution to the isolation and preliminary characterisation of ACT2 cDNA. We also thank Dr Julio Rozas for his advice in the phylogenetic analysis of thiolases and the staff from the Serveis de Camps Experimentals and Serveis Cientificotecnics of the Universitat de Barcelona for their help in plant culture, DNA-sequencing and confocal laser scanning microscopy.


References


An G (1986) Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiology 81, 86–91.
CAS | PubMed |
open url image1

Antonenkov VD, Croes K, Waelkens E, Van Veldhoven PP, Mannaerts GP (2000) Identification, purification and characterization of an acetoacetyl-CoA thiolase from rat liver peroxisomes. European Journal of Biochemistry 267, 2981–2990.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bach TJ, Boronat A, Campos N, Ferrer A, Vollack KU (1999) Mevalonate biosynthesis in plants. Critical Reviews in Biochemistry and Molecular Biology 34, 107–122.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Comptes Rendus de l’Académie des Sciences. Série 3. Sciences de la Vie 316, 1194–1199.
CAS |
open url image1

Bojorquez G, Gómez-Lim MA (1995) Peroxisomal thiolase mRNA is induced during mango fruit ripening. Plant Molecular Biology 28, 811–820.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Progress in Lipid Research 44, 357–429.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Carrie C, Murcha MW, Millar AH, Smith SM, Whelan J (2007) Nine 3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoA thiolases (ACATs) encoded by five genes in Arabidopsis thaliana are targeted either to peroxisomes or cytosol but not to mitochondria. Plant Molecular Biology 63, 97–108.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Castillo MC, Martínez C, Buchala A, Métraux JP, Léon J (2004) Gene-specific involvement of β-oxidation in wound-activated responses in Arabidopsis. Plant Physiology 135, 85–94.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Chappell J (1995) Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annual Review of Plant Physiology and Plant Molecular Biology 46, 521–547.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127, 579–589.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Clinkenbeard KD, Sugiyama T, Moss J, Reed WD, Lane MD (1973) Molecular and catalytic properties of cytosolic acetoacetyl coenzyme A thiolase from avian liver. Journal of Biological Chemistry 248, 2275–2284.
CAS | PubMed |
open url image1

Croteau R , Kutchan T , Lewis N (2000) Natural products (secondary metabolites). In ‘Biochemistry and Molecular Biology of Plants.’ (Eds B Buchanan, W Gruissem, R Jones) pp. 1250–1268. (American Society of Plant Biologists: Rockville, MD)

Cunillera N, Arró M, Delourme D, Karst F, Boronat A, Ferrer A (1996) Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes. Journal of Biological Chemistry 271, 7774–7780.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

De la Iglesia N, Veiga-da-Cunha M, Van Schaftingen E, Guinovart JJ, Ferrer JC (1999) Glucokinase regulatory protein is essential for the proper subcellular localisation of liver glucokinase. FEBS Letters 456, 332–338.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Dean C, van den Elzen P, Tamaki S, Dunsmuir P, Bedbrook J (1985) Differential expression of eight genes of the petunia ribulose bisphosphate carboxylase small subunit multi-gene family. The EMBO Journal 4, 3055–3061.
CAS | PubMed |
open url image1

Enjuto M, Balcells L, Campos N, Caelles C, Arró M, Boronat A (1994) Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme. Proceedings of the National Academy of Sciences of the United States of America 91, 927–931.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ferrer JC, Baqué S, Guinovart JJ (1997) Muscle glycogen synthase translocates from the cell nucleus to the cytosol in response to glucose. FEBS Letters 415, 249–252.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Frugoli JA, Zhong HH, Nuccio ML, McCourt P, McPeek MA, Thomas TL, McClung CR (1996) Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiology 112, 327–336.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Germain V, Rylott EL, Larson TR, Sherson SM, Bechtold N, Carde JP, Bryce JH, Graham IA, Smith SM (2001) Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development, fatty acid b-oxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings. The Plant Journal 28, 1–12.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Gilbert HF, Lennox BJ, Mossman CD, Carle WC (1981) The relation of acyl transfer to the overall reaction of thiolase I from porcine heart. Journal of Biological Chemistry 256, 7371–7377.
CAS | PubMed |
open url image1

Graham IA, Eastmond PJ (2002) Pathways of straight and branched chain fatty acid catabolism in higher plants. Progress in Lipid Research 41, 156–181.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hayashi M, Aoki M, Kondo M, Nishimura M (1997) Changes in targeting efficiencies of proteins to plant microbodies caused by amino acid substitutions in the carboxy-terminal tripeptide. Plant & Cell Physiology 38, 759–768.
CAS | PubMed |
open url image1

Hayashi M, Toriyama K, Kondo M, Nishimura M (1998) 2,4-Dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid b-oxidation. The Plant Cell 10, 183–195.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

He Y, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiology 128, 876–884.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hemmerlin A, Reents R, Mutterer J, Feldtrauer JF, Waldmann H, Bach TJ (2006) Monitoring farnesol-induced toxicity in tobacco BY-2 cells with a fluorescent analog. Archives of Biochemistry and Biophysics 448, 93–103.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hiser L, Basson ME, Rine J (1994) ERG10 from Saccharomyces cerevisiae encodes acetoacetyl-CoA thiolase. Journal of Biological Chemistry 269, 31383–31389.
CAS | PubMed |
open url image1

Igual JC, González-Bosch C, Dopazo J, Pérez-Ortín JE (1992) Phylogenetic analysis of the thiolase family. Implications for the evolutionary origin of peroxisomes. Journal of Molecular Evolution 35, 147–155.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reporter 5, 387–405.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Jin H , Nikolau BJ (2007) Genetic, biochemical and physiological studies of acetyl-CoA metabolism via condesation. In ‘Current Advances in the Biochemistry and Cell Biology of Plant Lipids.’ (Eds C Benning, J Ohlrogge) pp. 177. (Aardvark Global Publishing Company: Salt Lake City, UT)

Kanayama N, Ueda M, Atomi H, Tanaka A (1998) Genetic evaluation of physiological functions of thiolase isozymes in the n-alkane-assimilating yeast Candida tropicalis. Journal of Bacteriology 180, 690–698.
CAS | PubMed |
open url image1

Kato A, Hayashi M, Takeuchi Y, Nishimura M (1996) cDNA cloning and expression of a gene for 3-ketoacyl-CoA thiolase in pumpkin cotyledons. Plant Molecular Biology 31, 843–852.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Köhler RH (1998) GFP for in vivo imaging of subcellular structures in plant cells. Trends in Plant Science 3, 317–320.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kribii R, Arró M, Del Arco A, González V, Balcells L, Delourme D, Ferrer A, Karst F, Boronat A (1997) Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase. Involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway. European Journal of Biochemistry 249, 61–69.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kunau WH, Dommes V, Schulz H (1995) b-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Progress in Lipid Research 34, 267–342.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lange BM, Ghassemian M (2003) Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Molecular Biology 51, 925–948.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lluch MA, Masferrer A, Arró M, Boronat A, Ferrer A (2000) Molecular cloning and expression analysis of the mevalonate kinase gene from Arabidopsis thaliana. Plant Molecular Biology 42, 365–376.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiology and Molecular Biology Reviews 63, 21–53.
CAS | PubMed |
open url image1

Mathieu M, Modis Y, Zeelen JP, Engel CK, Abagyan RA, Ahlberg A, Rasmussen B, Lamzin VS, Kunau WH, Wierenga RK (1997) The 1.8 Å crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implications for substrate binding and reaction mechanism. Journal of Molecular Biology 273, 714–728.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Merkle T (2003) Nucleo-cytoplasmic partitioning of proteins in plants: implications for the regulation of environmental and developmental signalling. Current Genetics 44, 231–260.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Modis Y, Wierenga RK (2000) Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. Journal of Molecular Biology 297, 1171–1182.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Oeljeklaus S, Fischer K, Gerhardt B (2002) Glyoxysomal acetoacetyl-CoA thiolase and 3-oxoacyl-CoA thiolase from sunflower cotyledons. Planta 214, 597–607.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Olesen C, Thomsen KK, Svendsen I, Brandt A (1997) The glyoxysomal 3-ketoacyl-CoA thiolase precursor from Brassica napus has enzymatic activity when synthesized in Escherichia coli. FEBS Letters 412, 138–140.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Olivier LM, Krisans SK (2000) Peroxisomal protein targeting and identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes. Biochimica et Biophysica Acta 1529, 89–102.
CAS | PubMed |
open url image1

Olivier LM, Kovacs W, Masuda K, Keller GA, Krisans SK (2000) Identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes. AA-CoA thiolase, HMG-CoA synthase, MPPD, and FPP synthase. Journal of Lipid Research 41, 1921–1935.
CAS | PubMed |
open url image1

Peretó J, Lopez-Garcia P, Moreira D (2005) Phylogenetic analysis of eukaryotic thiolases suggests multiple proteobacterial origins. Journal of Molecular Evolution 61, 65–74.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Raikhel N (1992) Nuclear targeting in plants. Plant Physiology 100, 1627–1632.
CAS | PubMed |
open url image1

Reumann S (2004) Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiology 135, 783–800.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T , et al. (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. The Plant Cell 19, 3170–3193.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Rodríguez-Concepción M, Yalovsky S, Zik M, Fromm H, Gruissem W (1999) The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. The EMBO Journal 18, 1996–2007.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schiedel AC, Oeljeklaus S, Minihan P, Dyer JH (2004) Cloning, expression, and purification of glyoxysomal 3-oxoacyl-CoA thiolase from sunflower cotyledons. Protein Expression and Purification 33, 25–33.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Silva-Filho MC (2003) One ticket for multiple destinations: dual targeting of proteins to distinct subcellular locations. Current Opinion in Plant Biology 6, 589–595.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Singh R, Green MR (1993) Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259, 365–368.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Vollack KU, Bach TJ (1996) Cloning of a cDNA encoding cytosolic acetoacetyl-Coenzyme A thiolase from radish by functional expression in Saccharomyces cerevisiae. Plant Physiology 111, 1097–1107.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Wille A, Zimmermann P, Vranová E, Fürholz A, Laule O , et al. (2004) Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biology 5, R92.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhong HH, Young JC, Pease EA, Hangarter RP, McClung CR (1994) Interactions between light and the circadian clock in the regulation of CAT2 expression in Arabidopsis. Plant Physiology 104, 889–898.
CAS | PubMed |
open url image1