Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

On the 16O/18O isotope effect associated with photosynthetic O2 production

Guillaume Tcherkez A B D and Graham D. Farquhar C
+ Author Affiliations
- Author Affiliations

A Plateforme Métabolisme-Métabolome, IFR87, Université Paris-Sud XI, Orsay 91405, France.

B Laboratoire d’écophysiologie végétale, CNRS UMR 8079, Université Paris-Sud XI, Orsay 91405, France.

C Environmental Biology Group, Research School of Biological Sciences, Australian National University, Canberra, ACT 2601, Australia.

D Corresponding author. Email: guillaume.tcherkez@u-psud.fr

Functional Plant Biology 34(11) 1049-1052 https://doi.org/10.1071/FP07168
Submitted: 2 July 2007  Accepted: 13 September 2007   Published: 1 November 2007

Abstract

While photosynthetically evolved O2 has been repeatedly shown to have nearly the same oxygen isotope composition as source water so that there is no corresponding 16O/18O isotope effect, some recent 18O-enrichment studies suggest that a large isotope effect may occur, thus feeding a debate in the literature. Here, the classical theory of isotope effects was applied to show that a very small isotope effect is indeed expected during O2 production. Explanations of the conflicting results are briefly discussed.


Acknowledgements

The authors acknowledge the financial support provided by both the French and Australian Governments through the FAST project, under contract no. 12795 WC. Both authors warmly thank Prof. T. Wydrzynski and Dr W. Hillier for the critical reading of the manuscript and their helpful comments. G.F. acknowledges the Australian Research Council.


References


Bader K, Thibault P, Schmid GH (1987) Study on the properties of the S3-state by mass spectrometry in the filamentous cyanobacterium Oscillatoria chalybea. Biochimica et Biophysica Acta 893, 564–571.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bopp P, Heinzinger K, Klemm A (1977) Oxygen isotope fractionation and the structure of aqueous alkali halide solutions. Zeitschrift für Naturforschung A. A Journal of Physical Sciences 32, 1419–1425. open url image1

Buncel L , Saunders WH (1992) Isotopes in Organic Chemistry: Heavy Atom Isotope Effects. (Elsevier: New York)

Burda K, Bader K, Schmid GH (2001) An estimation of the size of the water cluster present at the cleavage site of the water splitting enzyme. FEBS Letters 491, 81–84.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Burda K, Bader KP, Schmid GH (2003) 18O isotope effect in the photosynthetic water splitting process. Biochimica et Biophysica Acta 1557, 77–82.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Clausen J, Junge W (2004) Detection of an intermediate of photosynthetic water oxidation. Nature 430, 480–483.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cleland WW (2005) The use of isotope effects to determine enzyme mechanisms. Archives of Biochemistry and Biophysics 433, 2–12.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Guy RD, Fogel ML, Berry JA (1993) Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiology 101, 37–47.
PubMed |
open url image1

Haumann M, Liebisch P, Müller C, Barra M, Grabolle M, Dau H (2005) Photosynthetic O2 formation tracked by time-resolved X-ray experiments. Science 310, 1019–1021.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Helman Y, Barkan E, Eisenstadt D, Luz B, Kaplan A (2005) Fractionation of the three stable oxygen isotopes by oxygen-producing and oxygen-consuming reactions in photosynthetic organisms. Plant Physiology 138, 2292–2298.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hillier W , Messinger J (2005) Mechanism of photosynthetic oxygen production. In ‘Photosystem II: the light driven water : plastoquinone oxidoreductase’. (Eds T Wydrzynski, K Satoh) pp. 567–608. (Springer: Dordrecht).

Hillier W, Wydrzynski T (2001) Oxygen ligand exchange at metal sites – implications for the O2 evolving mechanism of photosystem II. Biochimica et Biophysica Acta 1503, 197–201.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hillier W, Wydrzynski T (2004) Substrate water interactions within the photosystem II oxygen evolving complex. Physical Chemistry Chemical Physics 6, 4882–4889.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hillier W, McConnell I, Badger MR, Boussac A, Klimov VV, Dismukes GC, Wydrzynski T (2006) Quantitative assessment of intrinsic carbonic anhydrase activity and the capacity for bicarbonate oxidation in photosystem II. Biochemistry 45, 2094–2102.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Joliot P (1968) Kinetic studies of photosystem II in photosynethesis. Photochemistry and Photobiology 8, 451–463.
PubMed |
open url image1

McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chemical Reviews 106, 4455–4483.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schindler C, Reith P, Lichtenthaler HK (1994) Differential levels of carotenoids and decrease of zeaxanthin cycle performance during leaf development in a green and an aurea variety of tobacco. Journal of Plant Physiology 143, 500–507. open url image1

Smirnov VV, Roth JP (2006) Mechanisms of electron transfer in catalysis by copper zinc superoxide dismutase. Journal of the American Chemical Society 128, 16424–16425.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Smirnov VV, Brinkley DW, Lanci MP, Karlin KD, Roth JP (2006) Probing metal-mediated O2 activation in chemical and biological systems. Journal of Molecular Catalysis A 251, 100–107.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stevens CLR, Schultz D, Van Baalen C, Parker PL (1975) Oxygen isotope fractionation during photosynthesis in a blue-green and a green alga. Plant Physiology 56, 126–129.
PubMed |
open url image1

Tcherkez G (2006) How large is the isotope fractionation by the photorespiratory enzyme glycine decarboxylase? Functional Plant Biology 33, 911–920.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tcherkez G, Farquhar GD (2006) Isotopic fractionation by plant nitrate reductase, twenty years later. Functional Plant Biology 33, 531–537.
Crossref | GoogleScholarGoogle Scholar | open url image1

Truesdell AH (1974) Oxygen isotope activities and concentrations in aqueous salt solutions at elevated temperatures: consequences for isotope geochemistry. Earth and Planetary Science Letters 23, 387–396.
Crossref | GoogleScholarGoogle Scholar | open url image1