Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Systemic Potato virus X infection induces defence gene expression and accumulation of β-phenylethylamine-alkaloids in potato

Annette Niehl A C , Christophe Lacomme B , Alexander Erban A , Joachim Kopka A , Ute Krämer A and Joachim Fisahn A
+ Author Affiliations
- Author Affiliations

A Max-Planck Institute of Molecular Plant Physiology, Campus Golm, Am Mühlenberg 1, D-14476 Potsdam, Germany.

B Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK.

C Corresponding author. Email: niehl@mpimp-golm.mpg.de

Functional Plant Biology 33(6) 593-604 https://doi.org/10.1071/FP06049
Submitted: 7 March 2006  Accepted: 11 April 2006   Published: 1 June 2006

Abstract

A better understanding of defence responses elicited during compatible plant–virus interactions is a current goal in plant pathology. We analysed defence responses during infection of Solanum tuberosum L. cv. Desiree with Potato virus X (PVX) at the transcript and metabolite level. A mostly unchanged primary metabolism reflects the compatible nature of this plant–virus interaction. Salicylic acid biosynthesis and expression of several defence genes including PR-1 and glutathione-S-transferase, which are involved in ethylene and reactive oxygen species dependent signalling, were highly up-regulated in upper-uninoculated (systemic) leaves of PVX-infected potato plants compared with mock-inoculated controls. Moreover, the β-phenylethylamine-alkaloids tyramine, octopamine, dopamine and norepinephrine were highly induced upon infection. β-phenylethylamine-alkaloids can contribute to active plant defence responses by forming hydroxycinnamic acid amides (HCAA), which are thought to increase cell wall stability by extracellular peroxidative polymerisation. Expression of tyramine-hydroxycinnamoyl transferase (THT) and apoplastic peroxidase (POD) was highly induced upon PVX infection in systemic leaves, which suggests synthesis and extracellular polymerisation of HCAA. Since cell-wall-bound ion concentrations could contribute to this process, we measured cell-wall-bound and total ion concentrations in PVX-infected and mock-inoculated leaves. The observed metabolic and transcriptional changes might represent a systemic acquired resistance response against subsequent pathogen challenge.

Keywords: dopamine, hydroxycinnamic acid amides, PR-genes, PVX infection, salicylic acid, tyramine.


Acknowledgments

We thank Jonathan Negrel for providing p-coumaroyltyramine, feruloyltyramine and p-coumaroyldopamine standards and Leonard Krall for critical reading of the manuscript. We are grateful to Markus Pauly and Nicolai Obel for help with cell wall sugar analysis. Further, we thank Astrid Schroeder for carrying out ICP analysis. AN was supported by a Marie Curie Training PhD Fellowship in Plant Virology (QLK3-CT-2001-60032). Part of this work was supported by the German Federal Ministry of Education and Research Biofuture grant 0311877 (UK).


References


AbouHaidar MG , Xu H , Hefferon KL (1998) Potexvirus isolation and RNA extraction. In ‘Methods in molecular biology. Vol. 81: plant virology protocols: from virus isolation to transgenic resistance’. (Eds GD Foster, SC Taylor) pp. 131–143. (Humana Press: Totowa, NJ)

Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. The Plant Journal 37, 251–268.
PubMed |
open url image1

Bernards MA, Fleming WD, Llewellyn DB, Priefer R, Yang XL, Sabatino A, Plourde GL (1999) Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiology 121, 135–145.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57–63.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Christou P, Barton KA (1989) Cytokinin antagonist activity of substituted phenethylamines in plant cell culture. Plant Physiology 89, 564–568.
PubMed |
open url image1

Copeland R (1998) Assaying levels of plant virus by ELISA. In ‘Methods in molecular biology. Vol. 81: Plant virology protocols: from virus isolation to transgenic resistance’. (Eds GD Foster, SC Taylor) pp. 455–460. (Humana Press: Totowa, NJ)

Czechowski T, Bari RP, Stitt M, Scheible W-R, Udvardi MK (2004) Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. The Plant Journal 38, 366–379.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dardick CD, Golem S, Culver JN (2000) Susceptibility and symptom development in Arabidopsis thaliana to tobacco mosaic virus is influenced by virus cell-to-cell movement. Molecular Plant–Microbe Interactions 13, 1139–1144.
PubMed |
open url image1

Dempsey DA, Shah J, Klessig DF (1999) Salicylic acid and disease resistance in plants. Critical Reviews in Plant Sciences 18, 547–575.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ducic T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Brazilian Journal of Plant Physiology 17, 103–112. open url image1

Dunand C, Tognolli M, Overney S, von Tobel L, Meyer M, Simon P, Penel C (2002) Identification and characterisation of Ca2+-pectate binding peroxidases in Arabidopsis thaliana. Journal of Plant Physiology 159, 1165–1171.
Crossref | GoogleScholarGoogle Scholar | open url image1

Facchini PJ (1998) Temporal correlation of tyramine metabolism with alkaloid and amide biosynthesis in elicited opium poppy cell cultures. Phytochemistry 49, 481–490.
Crossref | GoogleScholarGoogle Scholar | open url image1

Facchini PJ, Hagel J, Zulak KG (2002) Hydroxycinnamic acid amide metabolism: physiology and biochemistry. Canadian Journal of Botany 80, 577–589.
Crossref | GoogleScholarGoogle Scholar | open url image1

Faivre-Rampant O, Gilroy EM, Hrubikova K, Hein I, Millam S, Loake GJ, Birch P, Taylor M, Lacomme C (2004) Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiology 134, 1308–1316.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fecht-Christoffers MM, Maier P, Horst WJ (2003) Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physiologia Plantarum 117, 237–244.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Analytical Chemistry 72, 3573–3580.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fritzemeier KH, Cretin C, Kombrink E, Rohwer F, Taylor J, Scheel D, Hahlbrock K (1987) Transient induction of phenylalanine ammonia-lyase and 4-coumarate : CoA ligase mRNAs in potato leaves infected with virulent or avirulent races of Phytophthora infestans. Plant Physiology 85, 34–41.
PubMed |
open url image1

Grandmaison J, Olah GM, Vancalsteren MR, Furlan V (1993) Characterization and localization of plant phenolics likely involved in the pathogen resistance expressed by endomycorrhizal roots. Mycorrhiza 3, 155–164.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hagel JM, Facchini PJ (2005) Elevated tyrosine decarboxylase and tyramine hydroxycinnamoyltransferase levels increase wound-induced tyramine-derived hydroxycinnamic acid amide accumulation in transgenic tobacco leaves. Planta 221, 904–914.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Harikrishna K, Jampatesbeale R, Milligan SB, Gasser CS (1996) An endochitinase gene expressed at high levels in the stylar transmitting tissue of tomatoes. Plant Molecular Biology 30, 899–911.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hoegen E, Stromberg A, Pihlgren U, Kombrink E (2002) Primary structure and tissue-specific expression of the pathogenesis-related protein PR-1b in potato. Molecular Plant Pathology 3, 329–345.
Crossref | GoogleScholarGoogle Scholar | open url image1

Huang ZL, Yeakley JM, Garcia EW, Holdridge JD, Fan JB, Whitham SA (2005) Salicylic acid-dependent expression of host genes in compatible Arabidopsis–virus interactions. Plant Physiology 137, 1147–1159.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Joos HJ, Hahlbrock K (1992) Phenylalanine ammonia-lyase in potato (Solanum tuberosum L.). Genomic complexity, structural comparison of two selected genes and modes of expression. European Journal of Biochemistry 204, 621–629.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kawalleck P, Keller H, Hahlbrock K, Scheel D, Somssich I (1993) A pathogen-responsive gene of parsley encodes tyrosine decarboxylase. Journal of Biological Chemistry 268, 2189–2194.
PubMed |
open url image1

Kombrink E, Schröder M, Hahlbrock K (1988) Several ‘pathogenesis-related’ proteins in potato are 1,3-β-glucanases and chitinases. Proceedings of the National Academy of Sciences USA 85, 782–786. open url image1

Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B , et al. (2005) GMD@CSB.DB: the Golm metabolome database. Bioinformatics 21, 1635–1638.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Love AJ, Yun BW, Laval V, Loake GJ, Milner JJ (2005) Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense-signaling pathways and activates rapid systemic generation of reactive oxygen species. Plant Physiology 139, 935–948.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Martin-Tanguy J, Martin C, Gallet M, Vernoy R (1976) Natural potent inhibitors of tobacco mosaic-virus multiplication. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences Serie D 282, 2231–2234. open url image1

Matsuda F, Morino K, Ano R, Kuzawa M, Wakasa K, Miyagawa H (2005) Metabolic flux analysis of the phenylpropanoid pathway in elicitor-treated potato tuber tissue. Plant & Cell Physiology 46, 454–466.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

McLusky SR, Bennett MH, Beale MH, Lewis MJ, Gaskin P, Mansfield JW (1999) Cell wall alterations and localized accumulation of feruloyl-3′-methoxytyramine in onion epidermis at sites of attempted penetration by Botrytis allii are associated with actin polarisation, peroxidase activity and suppression of flavonoid biosynthesis. The Plant Journal 17, 523–534.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nakane E, Kawakita K, Doke N, Yoshioka H (2003) Elicitation of primary and secondary metabolism during defense in the potato. Journal of General Plant Pathology 69, 378–384.
Crossref | GoogleScholarGoogle Scholar | open url image1

Negrel J, Javelle F (1997) Purification, characterization and partial amino acid sequencing of hydroxycinnamoyl-CoA-tyramine N-(hydroxycinnamoyl)transferase from tobacco cell-suspension cultures. European Journal of Biochemistry 247, 1127–1135.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Negrel J, Jeandet P (1987) Metabolism of tyramine and feruloyltyramine in TMV inoculated leaves of Nicotiana tabacum. Phytochemistry 26, 2185–2190.
Crossref | GoogleScholarGoogle Scholar | open url image1

Negrel J, Martin C (1984) The biosynthesis of feruloyltyramine in Nicotiana tabacum. Phytochemistry 23, 2797–2801.
Crossref | GoogleScholarGoogle Scholar | open url image1

Newman MA, von Roepenack-Lahaye E, Parr A, Daniels MJ, Dow JM (2001) Induction of hydroxycinnamoyl-tyramine conjugates in pepper by Xanthomonas campestris, a plant defense response activated by hrp gene-dependent and hrp gene-independent mechanisms. Molecular Plant–Microbe Interactions 14, 785–792.
PubMed |
open url image1

Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnology 22, 746–754.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Park JB, Schoene N (2002) Synthesis and characterization of N-coumaroyltyramine as a potent phytochemical which arrests human transformed cells via inhibiting protein tyrosine kinases. Biochemical and Biophysical Research Communications 292, 1104–1110.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends in Plant Science 9, 534–540.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pilling J, Willmitzer L, Bücking H, Fisahn J (2004) Inhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning. Planta 219, 32–40.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters 339, 62–66.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Roberts E, Kutchan T, Kolattukudy PE (1988) Cloning and sequencing of cDNA for a highly anionic peroxidase from potato and the induction of its mRNA in suberizing potato tubers and tomato fruits. Plant Molecular Biology 11, 15–26.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rozen S , Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In ‘Bioinformatics methods and protocols: methods in molecular biology’. (Eds S Krawetz, S Misener) pp. 365–386. (Humana Press: Totowa, NJ)

Ryals J, Weymann K, Lawton K, Friedrich L, Ellis D , et al. (1997) The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor IκB. The Plant Cell 9, 425–439.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes M, Willmitzer L (2005) GC–MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Letters 579, 1332–1337.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schmidt A, Grimm R, Schmidt J, Scheel D, Strack D, Rosahl S (1999) Cloning and expression of a potato cDNA encoding hydroxycinnamoyl-CoA: tyramine N-(hydroxycinnamoyl)transferase. Journal of Biological Chemistry 274, 4273–4280.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Shadle GL, Wesley SV, Korth KL, Chen F, Lamb C, Dixon RA (2003) Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of l-phenylalanine ammonia-lyase. Phytochemistry 64, 153–161.
Crossref | l
-phenylalanine ammonia-lyase.&journal=Phytochemistry&volume=64&pages=153-161&publication_year=2003&author=RA%20Dixon&hl=en&doi=10.1016/S0031-9422(03)00151-1" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Shah K, Penel C, Gagnon J, Dunand C (2004) Purification and identification of a Ca2+-pectate binding peroxidase from Arabidopsis leaves. Phytochemistry 65, 307–312.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sinclair SJ, Johnson R, Hamill JD (2004) Analysis of wound-induced gene expression in Nicotiana species with contrasting alkaloid profiles. Functional Plant Biology 31, 721–729.
Crossref | GoogleScholarGoogle Scholar | open url image1

Smith TH (1980) Plant amines. In ‘Encyclopedia of plant physiology 8: secondary plant products’ (Eds EA Bell, BV Charlwood) pp. 433–460. (Springer-Verlag, Berlin)

Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA , et al. (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. The Plant Cell 15, 760–770.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Swiedrych A, Lorenc-Kukula K, Skirycz A, Szopa J (2004) The catecholamine biosynthesis route in potato is affected by stress. Plant Physiology and Biochemistry 42, 593–600.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Taylor JL, Fritzemeier KH, Hauser I, Kombrink E, Rohwer F, Schröder M, Strittmatter G, Hahlbrock K (1990) Structural analysis and activation by fungal infection of a gene encoding a pathogenesis-related protein in potato. Molecular Plant–Microbe Interactions 3, 72–77.
PubMed |
open url image1

Torrance L, Larkins AP, Butcher GW (1986) Characterization of monoclonal antibodies against potato virus X and comparison of serotypes with resistance groups. The Journal of General Virology 67, 57–67. open url image1

Trezzini G, Horrichs A, Somssich I (1993) Isolation of putative defense-related genes from Arabidopsis thaliana and expression in fungal elicitor-treated cells. Plant Molecular Biology 21, 385–389.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tuchinda P, Pohmakotr M, Reutrakul V, Thanyachareon W, Sophasan S, Yoosook C, Santisuk T, Pezzuto J (2001) 2-Substituted furans from Polyalthia suberosa. Planta Medica 67, 572–575.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

von Roepenack-Lahaye E, Newman MA, Schornack S, Hammond-Kosack KE, Lahaye T, Jones JDG, Daniels MJ, Dow JM (2003) p-Coumaroylnoradrenaline, a novel plant metabolite implicated in tomato defense against pathogens. Journal of Biological Chemistry 278, 43373–43383.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC / EI-TOF-MS metabolite profiles. Phytochemistry 62, 887–900.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. The Plant Journal 33, 271–283.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562–565.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yalpani N, Leon J, Lawton MA, Raskin I (1993) Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiology 103, 315–321.
PubMed |
open url image1

Yu M, Facchini PJ (1999) Purification, characterization, and immunolocalization of hydroxycinnamoyl-CoA: tyramine N-(hydroxycinnamoyl)transferase from opium poppy. Planta 209, 33–44.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yu M, Facchini PJ (2000) Molecular cloning and characterization of a type III glutathione S-transferase from cell suspension cultures of opium poppy treated with a fungal elicitor. Physiologia Plantarum 108, 101–109.
Crossref | GoogleScholarGoogle Scholar | open url image1