Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Seawater stress applied at germination affects mitochondrial function in durum wheat (Triticum durum) early seedlings

Zina Flagella A B D , Daniela Trono A C , Marianna Pompa A , Natale Di Fonzo C and Donato Pastore A B
+ Author Affiliations
- Author Affiliations

A Dipartimento di Scienze Agroambientali, Chimica e Difesa Vegetale, Università di Foggia, Via Napoli, 25-71100 Foggia, Italy.

B Centro di Ricerea Interdipartimentale BIOAGROMED, Università di Foggia, Via Napoli, 6/B-71100 Foggia, Italy.

C Istituto Sperimentale per la Cerealicoltura C.R.A., SS 16 Km 675-71100 Foggia, Italy.

D Corresponding author. Email: z.flagella@unifg.it

Functional Plant Biology 33(4) 357-366 https://doi.org/10.1071/FP05244
Submitted: 4 October 2005  Accepted: 2 February 2006   Published: 3 April 2006

Abstract

Seawater stress effects on mitochondrial ATP synthesis and membrane potential (ΔΨ) were investigated in germinating durum wheat seedlings under moderate (22% seawater osmolarity, –0.62 MPa) and severe (37% seawater osmolarity, –1.04 MPa) stress. To estimate the osmotic component of salt stress, mannitol solutions (0.25 and 0.42 m) iso-osmotic with the saline ones were used. Moderate stress intensity only delayed mean germination time (MGT), whereas higher seawater osmolarity reduced germination percentage as well. In contrast, Na+ and Cl accumulation showed a sharp increase under moderate stress and only a small further increase under severe stress, which was more pronounced for Cl. Only severe stress significantly damaged succinate-dependent oxidative phosphorylation, which may be related to the stress-induced alteration in inner mitochondrial membrane permeability, as indicated by changes in ΔΨ profiles. Proline-dependent oxidative phosphorylation, however, was inhibited under moderate stress. This suggests the occurrence of an adaptation mechanism leading to proline accumulation as an osmoprotectant. Moreover, both the osmotic and the toxic components of seawater stress were detrimental to oxidative phosphorylation. Damage to germination and MGT, in contrast, were mainly caused by osmotic stress. Therefore, mitochondrial function appears to be a more sensitive target of toxic stress than growth. In conclusion, the effects of seawater stress on mitochondrial ATP synthesis vary in relation to the substrate oxidised and stress level, inducing both adaptive responses and damage.

Keywords: durum wheat, mitochondrial ATP synthesis, plant mitochondria, osmotic stress, salt stress, seawater.


Acknowledgments

This work was supported by grants from the University of Foggia to Z Flagella, under the project ‘Physiological indicators of salt tolerance in durum wheat’. We thank Dr Lucia Vittozzi who participated as a student in this work.


References


Åkerman EOK, Wikström KFM (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Letters 68, 191–197.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Alia P, Pardha Saradhi P (1993) Suppression in mitochondrial electron transport is the prime cause behind stress induced proline accumulation. Biochemical and Biophysical Research Communications 193, 54–58.
Crossref | PubMed |
open url image1

Almansouri M, Kinet J-M, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil 231, 243–254.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant and Soil 39, 205–207.
Crossref |
open url image1

Caliandro A, Cucci G, De Caro A, Cordella S (1991) Irrigation with brackish water: influence of the irrigation regime on salt built-up in the soil and leaching effect of rainfall. In ‘Proceedings of the European Mediterranean conference on the use of saline water in irrigation, Valenzeno (BA)’. (IAMB: Italy)


Carillo P, Mastrolonardo G, Nacca F, Fuggi A (2005) Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Functional Plant Biology 32, 209–219.
Crossref | GoogleScholarGoogle Scholar | open url image1

Casolo V, Braidot E, Chiandussi E, Vianello A, Macrì F (2003) K+ATP channel opening prevents succinate-dependent H2O2 generation by plant mitochondria. Physiologia Plantarum 118, 313–318.
Crossref | GoogleScholarGoogle Scholar | open url image1

Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. The Plant Journal 4, 215–223.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dizengremel P (1983) Effect of Triton X-100 on electron transport in plant mitochondria. Physiologie Vegetale 21, 731–741. open url image1

Douce R, Bourguignon J, Brouquisse R, Neuburger M (1987) Isolation of plant mitochondria: general principles and criteria of integrity. Methods in Enzymology 148, 403–415. open url image1

Dutilleul C, Garmier M, Noctor G, Mathieu C, Chétrit P, Foyer CH, de Paepe R (2003) Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signalling and diurnal regulation. The Plant Cell 15, 1212–1226.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Elia A, Santamaria P, Serio F (1996) Ammonium and nitrate influence on artichoke growth rate and uptake of inorganic ions. Journal of Plant Nutrition 19, 1029–1044. open url image1

Ellis RH, Ellis RH (1980) Towards a rational basis for testing seed quality. In ‘Seed production’. (Ed. PD Hebblethwaite) pp. 605–635. (Butterworths: London)

FAO 2005 ‘Food and Agriculture Organization of the United Nations’. Data available online at www.fao.org/ag/agl/aglw/aquastat/main/index.stm [Verified 7 February 2006].

Flagella Z, Cantore V, Giuliani MM, Tarantino E, De Caro A (2002) Crop salt tolerance: physiological, yield and quality aspects. Recent Research Development in Plant Biology 2, 155–186. open url image1

Francois LE, Maas EV (1994) Crop response and management of salt-affected soils. In ‘Handbook of plant and crop stress’. (Ed. M Pessarakli) pp. 149–181. (Marcel Dekker Inc.: New York)

Fratianni A, Pastore D, Pallotta ML, Chiatante D, Passarella S (2001) Increase of membrane permeability of mitochondria isolated from water stress adapted potato cells. Bioscience Reports 21, 81–91.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Goldstein AH, Anderson JO, McDaniel RG (1980) Cyanide-insensitive and cyanide-sensitive O2 uptake in wheat. Plant Physiology 66, 488–493. open url image1

Gomez JM, Hernandez JA, Jimenez A, del Rio LA, Sevilla F (1999) Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radical Research 31, 8–15. open url image1

Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Plant Physiology 31, 149–190.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas Complex II is protected by proline and betaine. Plant Physiology 126, 1266–1274.
Crossref | GoogleScholarGoogle Scholar | open url image1

Harris DA (1987) Spectrophotometric assays. In ‘Spectrophotometry & spectrofluorimetry: a practical approach’. (Eds CL Bashford, DA Harris) pp. 59–61. (IRL Press: Oxford)

Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology 51, 463–499.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hu Y, Fricke W, Schmidhalter U (2005) Salinity and the growth of non-halophytic grass leaves: the role of mineral nutrient distribution. Functional Plant Biology 32, 973–985.
Crossref | GoogleScholarGoogle Scholar | open url image1

Husain S, Munns R, Condon AG (2003) Effect of sodium exclusion trait on chlorophyll retention and growth of durum wheat in saline soil. Australian Journal of Agricultural Research 54, 589–597.
Crossref | GoogleScholarGoogle Scholar | open url image1

Husain S, von Caemmerer S, Munns R (2004) Control of salt transport from roots to shoots of wheat in saline soil. Functional Plant Biology 31, 1115–1126.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jolivet Y, Pireaux JC, Dizengremel P (1990) Changes in properties of barley leaf mitochondria isolated from NaCl-treated plants. Plant Physiology 94, 641–646. open url image1

Kasai K, Mori N, Nakamura C (1998) Changes in the respiratory pathways during germination and early seedling growth of common wheat under normal and NaCl-stressed conditions. Cereal Research Communications 26, 217–224. open url image1

Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M (2000) Salt tolerance classification of crops according to soil salinity and to water stress day index. Agricultural Water Management 43, 99–109.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kingsbury RW, Epstein E (1986) Salt sensitivity in wheat. Plant Physiology 80, 651–654. open url image1

Klein RR, Burke JJ, Wilson RF (1986) Effect of osmotic stress on ion transport processes and phospholipid composition of wheat (Triticum aestivum L.) mitochondria. Plant Physiology 82, 936–941. open url image1

Kromer S, Heldt HW (1991) Respiration of pea leaf mitochondria and redox transfer between the mitochondrial and the extra-mitochondrial compartment. Biochimica et Biophysica Acta 1057, 42–50. open url image1

Kuiper PJC (1980) Lipid metabolism of higher plants in saline environments. Physiologie Vegetale 18, 83–88. open url image1

Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Functional Plant Biology 31, 1105–1114.
Crossref | GoogleScholarGoogle Scholar | open url image1

Livne A, Levin N (1967) Tissue respiration and mitochondrial oxidative phosphorylation of NaCl-treated pea seedlings. Plant Physiology 42, 407–414. open url image1

Logan DC, Millar AH, Sweetlove LJ, Hill SA, Leaver CJ (2001) Mitochondrial biogenesis during germination in maize embryos. Plant Physiology 125, 662–672.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lutts S, Almansouri M, Kinet J-M (2004) Salinity and water stress have contrasting effects on the relationship between growth and cell viability during and after stress exposure in durum wheat callus. Plant Science 167, 9–18.
Crossref | GoogleScholarGoogle Scholar | open url image1

McKersie, B ,  and  Leshem, YY (Eds) (1994). ‘Stress and stress coping in cultivated plants.’ (Kluwer Academic Publisher: Dordrecht, The Netherlands)

Moore AL, Proudlove MO (1987) Purification of plant mitochondria on silica sol gradients. Methods in Enzymology 148, 415–420. open url image1

Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell & Environment 25, 239–250.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Muranaka S, Shimizu K, Kato M (2002) Ionic and osmotic effects of salinity on single-leaf photosynthesis in two wheat cultivars with different drought tolerance. Photosynthetica 40, 201–207.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pasternak D, De Malach Y (1994) Crop irrigation with saline water. In ‘Handbook of plant and crop stress’. (Ed. M Pessarakli) pp. 599–622. (Marcel Dekker Inc.: New York)

Pastore D, Greco M, Petragallo VA, Passarella S (1994) Increase in H+ / e– ratio of the cytochrome c oxidase reaction in mitochondria irradiated with helium–neon laser. Biochemistry and Molecular Biology International 34, 817–826.
PubMed |
open url image1

Pastore D, Stoppelli MC, Di Fonzo N, Passarella S (1999a) The existence of the K+ channel in plant mitochondria. Journal of Biological Chemistry 274, 26683–26690.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pastore D, Trono D, Passarella S (1999b) Substrate oxidation and ADP / ATP exchange in coupled durum wheat (Triticum durum Desf.) mitochondria. Plant Biosystems 133, 219–228. open url image1

Pastore D, Fratianni A, Di Pede S, Passarella S (2000) Effects of fatty acids, nucleotides and reactive oxygen species on durum wheat mitochondria. FEBS Letters 470, 88–92.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pastore D, Trono D, Laus MN, Di Fonzo N, Passerella S (2001) Alternative oxidase in durum wheat mitochondria. Activation by pyruvate, hydroxypyruvate and glyoxylate and physiological role. Plant & Cell Physiology 42, 1373–1382.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pastore D, Laus MN, Di Fonzo N, Passarella S (2002) Reactive oxygen species inhibit the succinate oxidation-supported generation of membrane potential in wheat mitochondria. FEBS Letters 516, 15–19.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Peckmann K, Herppich WB (1998) Effects of short-term drought and rewatering on the activity of mitochondrial enzymes and the oxidative capacity of leaf mitochondria from a CAM plant: Aptenia cordifolia. Journal of Plant Physiology 152, 518–524. open url image1

Petit PX (1992) Flow cytometric analysis of rhodamine 123 fluorescence during modulation of the membrane potential in plant mitochondria. Plant Physiology 98, 279–286. open url image1

Petrussa E, Casolo V, Peresson C, Braidot E, Vianello A, Macrì F (2004) The K+ATP channel is involved in a low-amplitude permeability transition in plant mitochondria. Mitochondrion 3, 297–307.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rana G, Katerji N (2000) Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. European Journal of Agronomy 13, 125–153.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rivelli AR, James RA, Munns R, Condon AG (2002) Effect of salinity on water relations and growth of wheat genotypes with contrasting sodium uptake. Functional Plant Biology 29, 1065–1074.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schmitt N, Dizengremel P (1989) Effect of osmotic stress on mitochondria isolated from etiolated mung bean and sorghum seedlings. Plant Physiology and Biochemistry 27, 17–26. open url image1

Schwarz M, Henri RL, Reinhold L (1991) Mitochondria isolated from NaCl-adapted tobacco cell lines (Nicotiana tabacum / gossii) maintain their phosphorylative capacity in highly saline media. Plant Physiology 96, 69–76. open url image1

Sells GD, Koeppe DE (1981) Oxidation of proline by mitochondria isolated from water-stressed maize shoots. Plant Physiology 68, 1058–1063. open url image1

Stewart CR, Boggess SF, Aspinall D, Paleg LG (1977) Inhibition of proline oxidation by water stress. Plant Physiology 59, 930–932. open url image1

Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. The Plant Journal 32, 891–904.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Taylor CB (1996) Proline and water deficit: ups, downs, ins, and outs. The Plant Cell 8, 1221–1223.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 40, 914–917. open url image1

Thomas JS, Sepahi M, Arendall B, Bohnert HJ (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant, Cell & Environment 18, 801–806. open url image1

Trono D, Flagella Z, Laus MN, Di Fonzo N, Pastore D (2004) The uncoupling protein and the potassium channel are activated by hyperosmotic stress in mitochondria from durum wheat seedlings. Plant, Cell & Environment 27, 437–448.
Crossref | GoogleScholarGoogle Scholar | open url image1

Voetberg GS, Sharp RE (1991) Growth of maize primary root at low water potential. III. Role of increased proline deposition in osmotic adjustment. Plant Physiology 96, 1125–1130. open url image1

Whitehouse DG, Fricaud AC, Moore AL (1989) Role of nonohmicity in the regulation of electron transport in plant mitochondria. Plant Physiology 91, 487–492. open url image1

Zhu JK (2001) Plant salt tolerance. Trends in Plant Science 6, 66–71.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zottini N, Mandolino G, Zannoni D (1993) Oxidation of external NAD(P)H by mitochondria from taproots and tissue cultures of sugar beet (Beta vulgaris). Plant Physiology 102, 579–585.
PubMed |
open url image1