Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Agrobacterium-mediated transformation of dormant lateral buds in poplar trees reveals developmental patterns in secondary stem tissues

Antanas V. Spokevicius A , Kim S. Van Beveren A and Gerd Bossinger A B
+ Author Affiliations
- Author Affiliations

A School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia.

B Corresponding author. Email: gerd@unimelb.edu.au

Functional Plant Biology 33(2) 133-139 https://doi.org/10.1071/FP05176
Submitted: 19 July 2005  Accepted: 21 September 2005   Published: 3 February 2006

Abstract

In an attempt to devise a method for the rapid creation of somatic transgenic wood sectors of sufficient size that would allow us to detect and analyse altered wood characteristics within them, we have explored the manual wounding and subsequent infection with Agrobacterium of dormant lateral buds in poplar. Following treatment and transformation with a 35S–GUS construct, frequent stable transformation was found in the form of distinct and specific GUS staining patterns in the outer cortex, cambial region (including primary and secondary xylem and phloem) and pith. Sector frequency and size were consistent with anatomical features of dormant lateral buds at the time of manual wounding and Agrobacterium-infection. The suitability of somatic sector analysis for functional genomic studies as well as for studies investigating pattern formation and the developmental fate of various cell-types within poplar stems is discussed.


Acknowledgments

We thank Lawrie Wilson, Zander Myburg and Simon Southerton for critically reading our manuscript. During this study AVS held an Australian Postgraduate Award (Industry) from the Australian Research Council (ARC). Financial support from the ARC and SAPPI (South Africa) is gratefully acknowledged. Finally thanks to everyone in the Tree Developmental Biology and Forest Biotechnology group for contributing to a creative research environment.


References


Allona I, Quinn M, Shoop E, Swope K, St Cyr S , et al. (1998) Analysis of xylem formation in pine by cDNA sequencing. Proceedings of the National Academy of Sciences USA 95, 9693–9698.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bossinger G (2002) Plant chimeras and mosaics. In ‘Encyclopedia of life sciences. Vol 14’. pp. 387–391. (Nature Publishing Group: London)

Bossinger G, Smyth DR (1996) Initiation patterns of flower and floral organ development in Arabidopsis thaliana. Development 122, 1093–1102.
PubMed |
open url image1

Bossinger G, Leitch M (2000) Isolation of cambial-specific genes from Eucalyptus globulus Labill. In ‘Cell & molecular biology of wood’. (Eds RA Savidge, JR Barnett, R Napier) pp. 203–207. (BIOS Scientific Publishers Ltd: Oxford)

Campbell MM, Brunner AM, Jones HM, Strauss SH (2003) Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotechnology Journal 1, 141–154.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chaffey N, Cholewa E, Regan S, Sundberg B (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiologia Plantarum 114, 594–600.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chupeau MC, Pautot V, Chupeau Y (1994) Recovery of transgenic trees after electroporation of poplar protoplasts. Transgenic Research 3, 13–19.
Crossref | GoogleScholarGoogle Scholar | open url image1

Confalonieri M, Balestrazzi A, Bisoffi S, Carbonera D (2003) In vitro culture and genetic engineering of Populus spp.: synergy for forest tree improvement. Plant Cell, Tissue and Organ Culture 72, 109–138.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dong JZ, McHughen A (1991) Patterns of transformation intensity on flax hypocotyls inoculated with Agrobacterium tumefaciens. Plant Cell Reports 10, 555–560.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dwivedi UN, Campbell WH, Yu J, Datla RSS, Bugos RC, Chiang VL, Podila GK (1994) Modification of lignin biosynthesis in transgenic Nicotiana through expression of an antisense O-methyltransferase gene from Populus. Plant Molecular Biology 26, 61–71.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Esau, K (1977). ‘Anatomy of seed plants.’ (John Wiley & Sons: New York)

FAO (2000) Global forest resource assessment, main report. United Nations Food and Agriculture Organisation, Rome.

Fillatti JJ, Sellmer J, McCown B, Haissig B, Comai L (1987) Agrobacterium mediated transformation and regeneration of Populus. Molecular & General Genetics 206, 192–199.
Crossref | GoogleScholarGoogle Scholar | open url image1

Finnegan EJ, Taylor BH, Craig S, Dennis ES (1989) Transposable elements can be used to study cell lineages in transgenic plants. The Plant Cell 1, 757–764.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Halpin C, Barakate A, Askari BM, Abbott JC, Ryan MD (2001) Enabling technologies for manipulating multiple genes on complex pathways. Plant Molecular Biology 47, 295–310.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R , et al. (2001) A transcriptional roadmap to wood formation. Proceedings of the National Academy of Sciences USA 98, 14732–14737.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hudson I, Wilson L, Van Beveren K (2001) Between species differences in whole tree maps of fibre properties in E. nitens and E. globulus — utility of control deviation charts to assess optimal sampling height. Appita Journal 54, 182–189. open url image1

Iqbal M, Ghouse AKM (1990) Cambial concept and organisation. In ‘The vascular cambium’. (Ed. M Iqbal) pp. 1–36. (Research Studies Press: Taunton, England)

Kibblewhite RP, Riddell MJC (2000) Wood and kraft fibre property variation within and among nine trees of Eucalyptus nitens. Appita Journal 53, 237–244. open url image1

Klopfenstein NB, McNabb HS, Hart ER, Hall RB, Hanna RD, Heuchelin SA, Allen KK, Shi NQ, Thornburg RW (1993) Transformation of Populus hybrids to study and improve pest resistance. Silvae Genetica 42, 86–90. open url image1

Leitch MA, Bossinger G (2004) In vitro systems for the study of wood formation. In ‘Molecular genetics and breeding of forest trees’. (Eds S Kumar, M Fladung) pp. 193–211. (Haworth: New York)

Liphschitz N, Waisel Y (1980) Periderm: structure, origin, development and rhythm of activity. In ‘Control of shoot growth in trees; proceedings of the joint workshop of IUFRO working parties on xylem and shoot growth physiology.’ (Ed. CHA Little) pp. 42–72. (IUFRO: Fredricton, Canada)

Little CHA, MacDonald JE, Olsson O (2002) Involvement of indole-3-acetic acid in fascicular and interfascicular cambial growth and interfascicular extraxylary fiber differentiation in Arabidopsis thaliana inflorescence stems. International Journal of Plant Sciences 163, 519–529.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lowe JM, Davey MR, Power JB, Blundy KS (1993) A study of some factors affecting Agrobacterium transformation and plant-regeneration of Dendranthema grandiflora Tzvelev (syn Chrysanthemum morifolium Ramat). Plant Cell, Tissue and Organ Culture 33, 171–180.
Crossref | GoogleScholarGoogle Scholar | open url image1

McCown BH, McCabe DE, Russell DR, Robison DJ, Barton KA, Raffa KF (1991) Stable transformation of Populus and incorporation of pest resistance by electric-discharge particle-acceleration. Plant Cell Reports 9, 590–594.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nesbitt MN, Gartler SM (1971) The application of genetic mosaicism to developmental problems. Annual Review of Genetics 5, 143–162.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ohashi-Ito K, Demura T, Fukuda H (2002) Promotion of transcript accumulation of novel Zinnia immature xylem-specific HD-Zip III homeobox genes by brassinosteroids. Plant and Cell Physiology 43, 1146–1153.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Parsons TJ, Sinkar VP, Stettler RF, Nester EW, Gordon MP (1986) Transformation of Poplar by Agrobacterium tumefaciens. Biol/Technology 4, 533–536.
Crossref |
open url image1

Plomion C, Pionneau C, Brach J, Costa P, Bailleres H (2000) Compression wood-responsive proteins in developing xylem of maritime pine (Pinus pinaster Ait.). Plant Physiology 123, 959–969.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ralph J, Hatfield RD, Piquemal J, Yahiaoui N, Pean M, Lapierre C, Boudet AM (1998) NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamyl-alcohol dehydrogenase and cinnamoyl-CoA reductase. Proceedings of the National Academy of Sciences USA 95, 12803–12808.
Crossref | GoogleScholarGoogle Scholar | open url image1

Roberts K, McCann MC (2000) Xylogenesis: the birth of a corpse. Current Opinion in Plant Biology 3, 517–522.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Spokevicius AV, Van Beveren K, Leitch MM, Bossinger G (2005) Agrobacterium-mediated in vitro transformation of wood-producing stem segments in eucalypts. Plant Cell Reports 23, 617–624.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A , et al. (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5 692 expressed sequence tags. Proceedings of the National Academy of Sciences USA 95, 13330–13335.
Crossref | GoogleScholarGoogle Scholar | open url image1

Szymkowiak EJ, Sussex IM (1996) What chimeras can tell us about plant development. Annual Review of Plant Physiology and Plant Molecular Biology 47, 351–376.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Taylor G (2002) Populus: Arabidopsis for forestry. Do we need a model tree? Annals of Botany 90, 681–689.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Taylor NG, Gardiner JC, Whiteman R, Turner SR (2004) Cellulose synthesis in the Arabidopsis secondary cell wall. Cellulose 11, 329–338.
Crossref | GoogleScholarGoogle Scholar | open url image1

van Raemdonck D, Jaziri M, Boerjan W, Baucher M (2001) Advances in the improvement of forest trees through biotechnology. Belgian Journal of Botany 134, 64–78. open url image1

von Schwartzenberg K, Doumas P, Jouanin L, Pilate G (1994) Enhancement of the endogenous cytokinin concentration in Poplar by transformation with Agrobacterium T-DNA gene ipt. Tree Physiology 14, 27–35.
PubMed |
open url image1

Ye ZH, Droste DL (1996) Isolation and characterization of cDNAs encoding xylogenesis-associated and wounding-induced ribonucleases in Zinnia elegans. Plant Molecular Biology 30, 697–709.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhang Y, Sederoff RR, Allona I (2000) Differential expression of genes encoding cell wall proteins in vascular tissues from vertical and bent loblolly pine trees. Tree Physiology 20, 457–466.
PubMed |
open url image1