Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Rapid and efficient production of transgenic bermudagrass and creeping bentgrass bypassing the callus formation phase

Zeng-Yu Wang A B and Yaxin Ge A
+ Author Affiliations
- Author Affiliations

A Forage Improvement Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.

B Corresponding author. Email: zywang@noble.org

Functional Plant Biology 32(9) 769-776 https://doi.org/10.1071/FP05083
Submitted: 7 April 2005  Accepted: 27 May 2005   Published: 26 August 2005

Abstract

Callus culture has been an inevitable step in genetic transformation of monocotyledonous (monocot) species. The induction and maintenance of embryogenic calluses is time-consuming, laborious and also requires experience. A straightforward and callus-free transformation procedure was developed and demonstrated for two monocot species, bermudagrass (Cynodon spp.) and creeping bentgrass (Agrostis stolonifera). Stolon nodes were infected and co-cultivated with Agrobacterium tumefaciens harboring pCAMBIA or pTOK233 binary vectors. Green shoots were directly produced from infected stolon nodes 4–5 weeks after hygromycin selection. Without callus formation and with minimum tissue culture, this procedure allowed us to obtain well-rooted transgenic plantlets in only 7 weeks and greenhouse-grown plants in only 9 weeks. The established plants were screened by PCR; the transgenic nature of the plants was demonstrated by Southern hybridisation analysis. Expression of the transgenes was confirmed by northern hybridisation analysis and GUS staining. Based on the number of transgenic plants obtained and the number of stolon nodes inoculated, transformation frequencies of 4.8%–6.1% and 6.3%–11.3% were achieved for bermudagrass and creeping bentgrass, respectively. The rapid and efficient production of transgenic plants without callus induction is a significant improvement for genetic transformation of monocot species.

Keywords: Agrobacterium, Agrostis, bermudagrass, creeping bentgrass, Cynodon, forage and turf grass, genetic transformation, transgenic plant.


Acknowledgments

We thank Kathy Spohn for editing the manuscript. The research was supported by the Samuel Roberts Noble Foundation.


References


Aldemita RR, Hodges TK (1996) Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta 199, 612–617.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chen L, Auh C, Dowling P, Bell J, Chen F, Hopkins A, Dixon RA, Wang Z-Y (2003) Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnology Journal 1, 437–449.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chen L, Auh C, Dowling P, Bell J, Lehmann D, Wang Z-Y (2004) Transgenic down-regulation of caffeic acid O-methyltransferase (COMT) led to improved digestibility in tall fescue (Festuca arundinacea). Functional Plant Biology 31, 235–245.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cheng M, Hu TC, Layton J, Liu CN, Fry JE (2003) Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cellular & Developmental Biology. Plant 39, 595–604.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cheng M, Lowe BA, Spencer TM, Ye XD, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cellular & Developmental Biology. Plant 40, 31–45.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chilton MD, Currier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proceedings of the National Academy of Sciences USA 71, 3672–3676. open url image1

Cho MJ, Choi HW, Lemaux PG (2001) Transformed T0 orchardgrass (Dactylis glomerata L.) plants produced from highly regenerative tissues derived from mature seeds. Plant Cell Reports 20, 318–324.
Crossref | GoogleScholarGoogle Scholar | open url image1

Choi HW, Lemaux PG, Cho M-J (2000) Increased chromosomal variation in transgenic versus nontransgenic barley (Hordeum vulgare L.) plants. Crop Science 40, 524–533. open url image1

Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Molecular Breeding 7, 25–33.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dai WD, Bonos S, Guo Z, Meyer WA, Day PR, Belanger FC (2003) Expression of pokeweed antiviral proteins in creeping bentgrass. Plant Cell Reports 21, 497–502.
PubMed |
open url image1

Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C , et al. (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiology 129, 13–22.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Goldman JJ, Hanna WW, Fleming GH, Ozias-Akins P (2004) Ploidy variation among herbicide-resistant bermudagrass plants of cv. TifEagle transformed with the bar gene. Plant Cell Reports 22, 553–560.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ha SB, Wu FS, Thorne TK (1992) Transgenic turf-type tall fescue (Festuca arundinacea Schreb.) plants regenerated from protoplasts. Plant Cell Reports 11, 601–604.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hanna WW, Elsner JE (1999) Registration of ‘TifEagle’ bermudagrass. Crop Science 39, 1258. open url image1

Hartman CL, Lee L, Day PR, Tumer NE (1994) Herbicide resistant turfgrass (Agrostis palustris Huds.) by biolistic transformation. Bio/Technology 12, 919–923.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal 6, 271–282.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hu T, Metz S, Chay C, Zhou HP, Biest N , et al. (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Reports 21, 1010–1019.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Huber M, Hahn R, Hess D (2002) High transformation frequencies obtained from a commercial wheat (Triticum aestivum L. cv. ‘Combi’) by microbombardment of immature embryos followed by GFP screening combined with PPT selection. Molecular Breeding 10, 19–30.
Crossref | GoogleScholarGoogle Scholar | open url image1

Janakiraman V, Steinau M, McCoy SB, Trick HN (2002) Recent advances in wheat transformation. In Vitro Cellular & Developmental Biology. Plant 38, 404–414.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jauhar, PP (1993). ‘Cytogenetics of the – complex: relevance to breeding.’ (Springer: Berlin)

Ke J, Khan R, Johnson T, Somers DA, Das A (2001) High-efficiency gene transfer to recalcitrant plants by Agrobacterium tumefaciens.  Plant Cell Reports 20, 150–156.
Crossref | GoogleScholarGoogle Scholar | open url image1

Li L, Qu R (2004) Development of highly regenerable callus lines and biolistic transformation of turf-type common bermudagrass [Cynodon dactylon (L.) Pers.]. Plant Cell Reports 22, 403–407.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lichtenstein, C ,  and  Draper, J (1985). Genetic engineering of plants. In ‘DNA cloning’. pp. 67–119. (IRL Press: Oxford)

Luo H, Hu Q, Nelson K, Longo C, Kausch AP, Chandlee JM, Wipff JK, Fricker CR (2004) Agrobacterium tumefaciens-mediated creeping bentgrass (Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration. Plant Cell Reports 22, 645–652.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum 15, 473–497. open url image1

Popelka JC, Altpeter F (2003) Agrobacterium tumefaciens-mediated genetic transformation of rye (Secale cereale L.). Molecular Breeding 11, 203–211.
Crossref | GoogleScholarGoogle Scholar | open url image1

Potrykus I (1991) Gene transfer to plants: assessment of published approaches and results. Annual Review of Plant Physiology and Plant Molecular Biology 42, 205–225.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sahrawat AK, Becker D, Lütticke S, Lörz H (2003) Genetic improvement of wheat via alien gene transfer, an assessment. Plant Science 165, 1147–1168.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sallaud C, Meynard D, Boxtel J, Gay C, Bès M , et al. (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theoretical and Applied Genetics 106, 1396–1408.
PubMed |
open url image1

Sambrook, J , Fritsch, EF ,  and  Maniatis, T (1989). ‘Molecular cloning: a laboratory manual.’ (Cold Spring Harbor Laboratory: New York)

Spangenberg G, Wang Z-Y, Wu XL, Nagel J, Iglesias VA, Potrykus I (1995) Transgenic tall fescue (Festuca arundinacea) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenic suspension cells. Journal of Plant Physiology 145, 693–701. open url image1

Spangenberg, G , Wang, Z-Y ,  and  Potrykus, I (1998). ‘Biotechnology in forage and turf grass improvement.’ (Springer: Berlin)

Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R, Wang MB (1997) Agrobacterium tumefaciens-mediated barley transformation. The Plant Journal 11, 1369–1376.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vasil IK (1994) Molecular improvement of cereals. Plant Molecular Biology 25, 925–937.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10, 667–674.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wan YC, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiology 104, 37–48.
PubMed |
open url image1

Wang Z-Y, Ge YX (2005) Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacea Schreb.). Journal of Plant Physiology 162, 103–113.
Crossref | PubMed |
open url image1

Wang Z-Y, Hopkins A, Mian R (2001) Forage and turf grass biotechnology. Critical Reviews in Plant Sciences 20, 573–619.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wang Z-Y, Lehmann D, Bell J, Hopkins A (2002) Development of an efficient plant regeneration system for Russian wildrye (Psathyrostachys juncea). Plant Cell Reports 20, 797–801.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wang Z-Y, Bell J, Ge YX, Lehmann D (2003a) Inheritance of transgenes in transgenic tall fescue (Festuca arundinacea Schreb.). In Vitro Cellular & Developmental Biology. Plant 39, 277–282.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wang Z-Y, Bell J, Hopkins A (2003b) Establishment of a plant regeneration system for wheatgrasses (Thinopyrum, Agropyron and Pascopyrum). Plant Cell, Tissue and Organ Culture 73, 265–273.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wang Z-Y, Bell J, Lehmann D (2004) Transgenic Russian wildrye (Psathyrostachys juncea) plants obtained by biolistic transformation of embryogenic suspension cells. Plant Cell Reports 22, 903–909.
PubMed |
open url image1

Warnke, S (2002). Creeping bentgrass (Agrostis stolonifera L.). In ‘Turfgrass biology, genetics and breeding’. pp. 175–185. (John Wiley & Sons, Inc.: Hoboken, NJ)

Xiao L, Ha SB (1997) Efficient selection and regeneration of creeping bentgrass transformants following particle bombardment. Plant Cell Reports 16, 874–878.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yu TT, Skinner DZ, Liang GH, Trick HN, Huang B, Muthukrishnan S (2000) Agrobacterium-mediated transformation of creeping bentgrass using GFP as a reporter gene. Hereditas 133, 229–233.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhang G, Lu S, Chen TA, Funk CR, Meyer WA (2003) Transformation of triploid bermudagrass (Cynodon dactylon × C. transvaalensis cv. TifEagle) by means of biolistic bombardment. Plant Cell Reports 21, 860–864.
PubMed |
open url image1

Zhao ZY, Cai TS, Tagliani L, Miller M, Wang N , et al. (2000) Agrobacterium-mediated sorghum transformation. Plant Molecular Biology 44, 789–798.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhong H, Bolyard MG, Srinivasan C, Sticklen MB (1994) Transgenic plants of turfgrass (Agrostis palustris Huds.) from microprojectile bombardment of embryogenic callus. Plant Cell Reports 13, 1–6. open url image1