Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Characterisation of a T-DNA-tagged gene of Arabidopsis thaliana that regulates gibberellin metabolism and flowering time

Maria Svensson A , Dan Lundh B , Per Bergman C and Abul Mandal A D
+ Author Affiliations
- Author Affiliations

A School of Life Sciences, University of Skövde, P.O. Box 408, SE-541 28 Skövde, Sweden.

B School of Communication and Information, University of Skövde, P.O. Box 408, SE-541 28 Skövde, Sweden.

C Department of Plant Biology and Forest Genetics, SLU, SE-750 07 Uppsala, Sweden.

D Corresponding author. Email: abul.mandal@his.se

Functional Plant Biology 32(10) 923-932 https://doi.org/10.1071/FP05019
Submitted: 24 January 2005  Accepted: 20 May 2005   Published: 5 October 2005

Abstract

A gene (At4g20010) involved in regulating flowering time in Arabidopsis thaliana (L.) Heynh. was identified by promoter trap T-DNA tagging. Plants containing a T-DNA insert in the 3′-UTR of At4g20010 flowered later under both long- and short-day conditions compared with control plants. Histochemical assays of the mutant plants showed that the promoterless gus gene is expressed predominantly in the shoot apex, but it is also expressed in root tips, stem nodes and in the abscission zone of developing siliques. Measurement of endogenous gibberellin (GA) showed that bioactive GA4 levels in mutant plants were reduced compared with wild type (WT) plants. Like other known mutants defective in GA biosynthesis, the late-flowering phenotype observed in our T-DNA-tagged line could be largely repressed by application of exogenous GA3. The T-DNA-tagged gene At4g20010 encodes a previously uncharacterised protein belonging to the DUF731 family. Sequence analysis showed similarity to a single-stranded binding domain and to an RNA-binding protein of Chlamydomonas reinhardtii. Considering the above results (sequence similarity, mutant phenotype and level of endogenous GA), we propose that At4g20010 is an RNA-binding protein involved in regulating GA biosynthesis, possibly at the post-transcriptional level.

Keywords: gibberellin biosynthesis, late-flowering, RNA-binding.


Acknowledgments

We thank Dr Thomas Moritz and Inga-Britt Carlsson (SLU, Umeå) for help in measuring endogenous GAs. A grant from the Nilsson-Ehle Foundation (The Royal Physiographic Society in Lund) is also gratefully acknowledged. We also thank Dr Sibdas Ghosh and his students Faith, Francesco, Demetrius and Sherri from the Dominican University of California for their collaboration.


References


Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H , et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Alvarado MC, Zsigmond LM, Kovacs I, Cseplo A, Koncz C, Szabados LM (2004) Gene trapping with firefly luciferase in Arabidopsis. Tagging of stress-responsive genes. Plant Physiology 134, 18–27.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E , et al. (2001) The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Research 29, 37–40.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bailey, NTJ (1993). The use of t-tests for small samples. In ‘Statistical methods in biology’. (University Press: Cambridge, UK)

Barnes D, Cohen A, Bruick RK, Kantardjieff K, Fowler S, Efuet E, Mayfield SP (2004) Identification and characterization of a novel RNA binding protein that associates with the 5′-untranslated region of the chloroplast psbA mRNA. Biochemistry 43, 8541–8550.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL (2000) GenBank. Nucleic Acids Research 28, 15–18.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Busov VB, Meilan R, Pearce DW, Ma C, Rood SB, Strauss SH (2003) Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiology 132, 1283–1291.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cheng Y, Chen X (2004) Posttranscriptional control of plant development. Current Opinion in Plant Biology 7, 20–25.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chiang HH, Hwang I, Goodman HM (1995) Isolation of the Arabidopsis GA4 locus. The Plant Cell 7, 195–201.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Davies, PJ (1995). ‘Plant hormones: physiology, biochemistry and molecular biology.’ (Kluwer Academic Publishers: Dordrecht)

De Buck S, De Wilde C, Van Montagu M, Depicker A (2000) T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation. Molecular Breeding 6, 459–468.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fedoroff NV (2002) RNA-binding proteins in plants: the tip of an iceberg? Current Opinion in Plant Biology 5, 452–459.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Forsbach A, Schubert D, Lechtenberg B, Gils M, Schmidt R (2003) A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Molecular Biology 52, 161–176.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science 5, 523–530.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jefferson RA (1987) Assaying chimeric genes in plants: the gus gene fusion system. Plant Molecular Biology Reporter 5, 387–405. open url image1

Koornneef M, Van der Veen JH (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theoretical and Applied Genetics 58, 257–263.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lim MH, Kim J, Kim YS, Chung KS, Seo YH, Lee I, Kim J, Hong CB, Kim HJ, Park CM (2004) A new Arabidopsis gene, FLK, encodes an RNA-binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. The Plant Cell 16, 731–740.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Macknight R, Bancroft I, Page T, Lister C, Schmidt R , et al. (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89, 737–745.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. The Plant Journal 37, 720–729.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mandal A, Sandgren M, Holmström K-O, Gallois P, Palva ET (1995) Identification of Arabidopsis thaliana sequences responsive to low temperature and abscisic acid by T-DNA tagging and in vivo gene fusion. Plant Molecular Biology Reporter 13, 243–254. open url image1

Marchler-Bauer A, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY , et al. (2003) CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Research 31, 383–387.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Meza TJ, Stangeland B, Mercy IS, Skarn M, Nymoen DA , et al. (2002) Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing. Nucleic Acids Research 30, 4556–4566.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mockler TC, Yu X, Shalitin D, Parikh D, Michael TP , et al. (2004) Regulation of flowering time in Arabidopsis by K homology domain proteins. Proceedings of the National Academy of Sciences USA 101, 12 759–12 764.
Crossref | GoogleScholarGoogle Scholar | open url image1

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473–497. open url image1

Peng J, Richards DE, Moritz T, Cano-Delgado A, Harberd NP (1999) Extragenic suppressors of the Arabidopsis gai mutation alter the dose-response relationship of diverse gibberellin responses. Plant Physiology 119, 1199–1208.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Perez-Canadillas JM, Varani G (2001) Recent advances in RNA-protein recognition. Current Opinion in Structural Biology 11, 53–58.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ross JJ, Murfet IC, Reid JB (1997) Gibberellin mutants. Physiologia Plantarum 100, 550–560.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schomburg FM, Patton DA, Meinke DW, Amasino RM (2001) FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. The Plant Cell 13, 1427–1436.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Southern E (1975) Detection of specific DNA sequences among fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–517.
PubMed |
open url image1

Sun TP, Kamiya Y (1994) The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. The Plant Cell 6, 1509–1518.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Svensson M, Lundh D, Ejdeback M, Mandal A (2004) Functional prediction of a T-DNA tagged gene of Arabidopsis thaliana by in silico analysis. Journal of Molecular Modeling 10, 130–138.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Talon M, Koornneef M, Zeevaart JA (1990) Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants. Proceedings of the National Academy of Sciences USA 87, 7983–7987. open url image1

Watson JM, Brill EM (2004) Eucalyptus grandis has at least two functional SOC1-like floral activator genes. Functional Plant Biology 31, 225–234.
Crossref | GoogleScholarGoogle Scholar | open url image1

Xu YL, Li L, Wu K, Peeters AJ, Gage DA, Zeevaart JA (1995) The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression. Proceedings of the National Academy of Sciences USA 92, 6640–6644. open url image1

Yamaguchi S, Kamiya Y (2000) Gibberellin biosynthesis: its regulation by endogenous and environmental signals. Plant and Cell Physiology 41, 251–257.
Crossref | PubMed |
open url image1