Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Gibberellin-dependent induction of tomato extracellular invertase Lin7 is required for pollen development

Reinhard K. Proels A B , Mari-Cruz González A C and Thomas Roitsch A D
+ Author Affiliations
- Author Affiliations

A Lehrstuhl für Pharmazeutische Biologie, Julius von Sachs Institut, Universität Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany.

B Current address: Korean Basic Science Institute, Cyanobacterium functional genomics team, Daejeon 305-333, Korea.

C Current address: Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas ‘Isla de la Cartuja’, Avda. Americo Vespucio, 49, 41092-Sevilla, Spain.

D Corresponding author. Email: roitsch@biozentrum.uni-wuerzburg.de

Functional Plant Biology 33(6) 547-554 https://doi.org/10.1071/FP04146
Submitted: 13 August 2004  Accepted: 28 March 2006   Published: 1 June 2006

Abstract

The tomato extracellular invertase family comprises four members with different expression patterns. Among the three invertase isoenzymes expressed in floral tissues, Lin5, Lin6 and Lin7, the expression of Lin7 was previously shown to be restricted to the tapetum and pollen. Histochemical analysis of β-glucuronidase (GUS) reporter activity shows Lin7 expression in pollen and pollen tubes of corresponding transgenic plants. The physiological relevance of the identification of gibberellin-responsive cis-acting elements for induction of the Lin7 promoter is supported by the repression of Lin7 expression in pollen grains by the gibberellin biosynthesis inhibitor paclobutrazol. Functional approaches with transgenic tomato plants establish a link between gibberellin action and invertase function in the tapetum for pollen development: both tissue-specific antisense repression of extracellular Lin7 and ectopic inactivation of the biologically active GAs by expression of a GA2-oxidase under control of the Lin7 promoter result in germination deficient pollen. These complementary findings support the idea that the GA requirement of pollen development, pollen germination and pollen tube growth are linked to energy metabolism via the regulation of an extracellular invertase as a key enzyme for carbohydrate supply via an apoplasmic pathway.

Keywords: extracellular invertase, GA, Lin7, Lycopersicon, pollen development.


Acknowledgments

The authors thank Dr Beier (Universität Würzburg, Germany) for providing a fluorometer, C Hampp and J Rech for skillful technical assistance, and G Lebon for critical reading of the manuscript. Financial support by the Studienstiftung des Deutschen Volkes to RP and a postdoctoral fellowship from the Federation of European Biochemical Societies (FEBS) to MCG is also gratefully acknowledged.


References


Balibrea Lara ME, Gonzalez M-C, Fatima T, Ehneß R, Lee TK, Proels R, Tanner W, Roitsch T (2004) Extracellular invertase is an essential component of cytokinin mediated delay of senescence. The Plant Cell 16, 1276–1287.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Barendse GWM, Rodrigues-Pereira AJ, Berkers PA, Driessen FM, van Eyden-Emons A, Linskens HF (1970) Growth hormones in pollen, styles and ovaries of Petunia hybrida and Lilium species. Acta Botanica Neerlandica 19, 175–186. open url image1

Bhandal IS, Malik CP (1979) Effect of gibberellic acid, (2-chloroethyl), phosphoric acid, actinomycin-D and cycloheximide on the activity and leaching of some hydrolases in pollen suspension cultures of Crotalaria juncea. Physiologia Plantarum 45, 297–300.
Crossref |
open url image1

Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Analytical Biochemistry 162, 156–159.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Clément C, Burrus M, Audran J-C (1996) Floral organ growth and carbohydrate content during pollen development in Lilium. American Journal of Botany 83, 459–469.
Crossref |
open url image1

Clément C , Pacini E , Audan JC (1999) ‘Anther and pollen, from biology to biotechnology.’ (Springer: Berlin)

Cox CM, Swain SM (2006) Localised and non-localised promotion of fruit development by seeds in Arabidopsis. Functional Plant Biology 33, 1–8.
Crossref | GoogleScholarGoogle Scholar | open url image1

Eschrich W (1980) Free space invertase, its possible role in phloem unloading. Berichte der Deutschen Botanischen Gesellschaft 93, 363–378. open url image1

Fillatti JJ, Kiser J, Rose R, Comai L (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio / Technology 5, 726–730.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fleet CM, Sun T-P (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Current Opinion in Plant Biology 8, 77–85.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Godt DE, Roitsch T (1997) Regulation and tissue-specific distribution of mRNA for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism. Plant Physiology 115, 273–282.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Goetz M, Godt DE, Guivarch A, Kahmann U, Chriqui D, Roitsch T (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proceedings of the National Academy of Sciences USA 98, 6522–6527.
Crossref | GoogleScholarGoogle Scholar | open url image1

Goto N, Pharis RP (1999) Role of gibberellins in the development of floral organs of gibberellin-deficient mutant, ga1-1, of Arabidopsis thaliana. Canadian Journal of Botany 77, 944–954.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for myb transactivation of a high-pI α-amylase gene promoter. The Plant Cell 7, 1879–1891.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science 5, 523–530.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Horsch RB, Fry FB, Hoffmann NL, Eichholtz P, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227, 1229–1231. open url image1

Huang S, Cerny RE, Qi Y, Bhat D, Aydt CM, Hanson DD, Malloy KP, Ness LA (2003) Transgenic studies on the involvement of cytokinin and gibberellin in male development. Plant Physiology 131, 1270–1282.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS-fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6, 3901–3907.
PubMed |
open url image1

Kaneko M, Inukai Y, Ueguchi-Tanaka M, Itho H, Izawa T , et al. (2004) Loss-of-function mutations of the rice GAMYB gene impair α-amylase expression in aleurone and flower development. The Plant Cell 16, 33–44.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kerim T, Imin N, Weinman JJ, Rolfe BG (2003) Proteome analysis of male gametophyte development in rice anthers. Proteomics 3, 738–751.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kimura PH, Okomoto G, Hirano K (1996) Effects of gibberellic acid and streptomycin on pollen germination and ovule and seed development in Muscat Bailey A. American Journal of Enology and Viticulture 47, 152–156. open url image1

Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology 7, 235–246.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Koonjul PK, Minhas JS, Nunes C, Sheoran IS, Saini HS (2005) Selective transcriptional down-regulation of anther invertases precedes the failure of pollen development in water-stressed wheat. Journal of Experimental Botany 56, 179–190.
PubMed |
open url image1

Lorenz K, Lienhard S, Sturm A (1995) Structural organisation and differential expression of carrot β-fructofuranosidase genes: identification of a gene coding for a flower bud-specific isoenzyme. Plant Molecular Biology 28, 189–194.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Maddison AL, Hedeley PE, Meyer RC, Aziz N, Davidson D, Machray GC (1999) Expression of tandem invertase genes associated with sexual and vegetative growth cycles in potato. Plant Molecular Biology 41, 741–751.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mander LN, Owen DJ, Croker SJ, Gaskin P, Hedden P , et al. (1996) Identification of three C20-gibberellins: GA97 (2 β-hydroxy-GA53), GA98 (2 β-hydroxy-GA44) and GA99 (2 β-hydroxy-GA19). Phytochemistry 43, 23–28.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Murray F, Kalla R, Jacobsen J, Gubler F (2003) A role for HvGAMYB in anther development. The Plant Journal 33, 481–491.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Nester JE, Zeevaart JAD (1988) Flower development in normal tomato and a gibberellin-deficient (ga-2) mutant. American Journal of Botany 75, 45–55.
Crossref |
open url image1

Olszewski N, Sun T-P, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. The Plant Cell Supplement 14, S61–S80.
PubMed |
open url image1

Proels RK, Hause B, Berger S, Roitsch T (2003) Novel mode of hormone induction of tandem tomato invertase genes in floral organs. Plant Molecular Biology 52, 191–201.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ranwala AP, Baird WV, Miller WB (1998) Organ-specific localization and molecular properties of three soluble invertases from Lilium longiflorum flower buds. Physiologia Plantarum 103, 551–559.
Crossref | GoogleScholarGoogle Scholar | open url image1

Richards DE, King KE, Ait-ali T, Harberd NP (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signalling. Annual Review of Plant Physiology and Plant Molecular Biology 52, 67–85.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Roitsch T, González M-C (2004) Function and regulation of plant invertases: sweet sensations. Trends in Plant Science 9, 606–613.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Roitsch T, Ehneß R, Goetz M, Hause B, Hofmann M, Sinha AK (2000) Regulation and function of extracellular invertase from higher plants in relation to assimilate partitioning, stress responses and sugar signalling. Australian Journal of Plant Physiology 27, 815–825. open url image1

Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK (2003) Extracellular invertase: key metabolic enzyme and PR protein. Journal of Experimental Botany 54, 513–524.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schneidereit A, Scholz-Starke J, Büttner M (2003) Functional characterization and expression analyzes of the glucose-specific AtSTP9 monosaccharide transporter in pollen of Arabidopsis. Plant Physiology 133, 182–190.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Scholz-Starke J, Büttner M, Sauer N (2003) AtSTP6, a new pollen-specific H+-monosaccharide symporter from Arabidopsis. Plant Physiology 131, 70–77.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Setia N, Setia RC, Chhabra N (1994) Interactive effects of growth hormones and calcium antagonists on germination and tube elongation of ground-nut pollen. Plant Cell Incompatibility Newsletter 26, 70–80. open url image1

Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM (2003) Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. Journal of Experimental Botany 54, 525–531.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Singh DP, Jermakow AM, Swain SM (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. The Plant Cell 14, 3133–3147.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Gene expression: Total silencing by intron-spliced hairpin RNAs. Nature 407, 319–320.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sturm A (1999) Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiology 121, 1–7.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sun T-P, Gubler F (2004) Molecular mechanisms of gibberellin signaling in plants. Annual Review of Plant Biology 55, 197–223.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sutoh K, Yamauchi D (2003) Two cis-acting elements necessary and sufficient for gibberellin-upregulated proteinase expression in rice seeds. The Plant Journal 34, 635–645.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Swain SM, Singh DP (2005) Tall tales from sly dwarves: novel functions of gibberellins in plant development. Trends in Plant Science 10, 123–129.
PubMed |
open url image1

Swain SM, Muller AJ, Singh DP (2004) The gar2 and rga alleles increase the growth of gibberellin-deficient pollen tubes in Arabidopsis. Plant Physiology 134, 694–705.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tang G-Q, Lüscher M, Sturm A (1999) Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. The Plant Cell 11, 177–189.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proceedings of the National Academy of Sciences USA 96, 4698–4703.
Crossref | GoogleScholarGoogle Scholar | open url image1

Truernit E, Stadler R, Baier K, Sauer N (1999) A male gametophyte-specific monosaccharide transporter in Arabidopsis. The Plant Journal 17, 191–201.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tymowska-Lalanne Z, Kreis M (1998) The plant invertases: physiology, biochemistry and molecular biology. Advances in Botanical Research 28, 71–117. open url image1

Viti R, Bartolini S, Vitagliano C (1990) Growth regulators on pollen germination in olive. Acta Horticulturae 286, 227–230. open url image1

Weber H, Borisjuk L, Heim U, Buchner P, Wobus U (1995) Seed coat-associated invertases of fava bean control both unloading and storage functions. Cloning of cDNAs and cell type-specific expression. The Plant Cell 7, 1835–1864.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Xu J, Avigne WT, McCarty DR, Koch KE (1996) A similar dichotomy of sugar modulation and developmental expression affects both paths of sucrose metabolism: evidence from maize invertase gene family. The Plant Cell 8, 1209–1220.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ylstra B, Garrido D, Busscher J, Tunen AJ (1998) Hexose transport in growing Petunia pollen tubes and characterization of a pollen-specific, putative monosaccharide transporter. Plant Physiology 118, 297–304.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1