Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Distinct cis-elements in the Asparagus officinalis asparagine synthetase promoter respond to carbohydrate and senescence signals

Somrutai Winichayakul A , Richard L. Moyle A C , Dacey J. Ryan B , Kevin J. F. Farnden A , Kevin M. Davies B E and Simon A. Coupe B D
+ Author Affiliations
- Author Affiliations

A Department of Biochemistry, University of Otago, PO Box 56, Dunedin, NZ.

B New Zealand Institute for Crop and Food Research Limited, Private Bag 11-600, Palmerston North, NZ.

C Current address: Department of Botany, John Hines Building, The University of Queensland, Brisbane, Qld 4072, Australia.

D Current address: Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.

E Corresponding author; email: daviesk@crop.cri.nz

Functional Plant Biology 31(6) 573-582 https://doi.org/10.1071/FP03198
Submitted: 21 October 2003  Accepted: 19 February 2004   Published: 23 June 2004

Abstract

The Asparagus officinalis L. asparagine (Asn) synthetase (AS) promoter was analysed for elements responding to carbohydrate and senescence signals. Transgenic Arabidopsis thaliana L. plants containing deletion constructs of the –1958 bp AS promoter linked to the β-glucuronidase (GUS) reporter gene (AS::GUS) were analysed by measuring GUS specific activity. Inclusion of sucrose (Suc), glucose (Glc) or fructose (Fru) in plant media repressed levels of GUS activity in –1958AS::GUS plants, regardless of the light environment, with increases in GUS found 1 d after incubation on Suc-lacking media. Hexokinase is likely to be involved in the signal pathway, as Suc, Glc, Fru, 2-deoxy-d-glucose and mannose were more effective repressors than 3-O-methylglucose, and the hexokinase inhibitor mannoheptulose reduced repression. Plants containing AS::GUS constructs with deletions that reduced the promoter to less than –405 bp did not show low sugar induction. AS::GUS activity was significantly higher in excised leaves induced to senesce by dark storage for 24 h, compared to fresh leaves, for lines containing at least –640 bp of the AS promoter but not those with –523 bp or smaller promoter fragments. Fusion of the –640 to –523 bp region to a –381AS::GUS construct generated a promoter that retained senescence induction but lacked low sugar induction. Alignment of this region to the 33-bp senescence-related sequence of the Arabidopsis and Brassica napus L. SAG12 promoters identified the sequence TTGCACG as being conserved in all the promoters, and which may be an important senescence-responsive element.

Keywords: asparagine synthetase, asparagus, gene regulation, promoter, senescence, sugar.


Acknowledgments

We thank Ian King for care of Arabidopsis transgenics. The New Zealand Foundation for Research, Science and Technology supported this work financially and SW was partially funded by a University of Otago 125th Jubilee Scholarship.


References


Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Comptes Rendus de l Academie des Sciences Serie III-Sciences de la Vie-Life Sciences 316, 1194–1199. open url image1

Bleecker AB, Patterson SE (1997) Last exit — senescence, abscission, and meristem arrest in Arabidopsis. The Plant Cell 9, 1169–1179.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Boase MR, Butler RC, Borst NK (1998) Chrysanthemum cultivar–Agrobacterium interactions revealed by GUS expression time course experiments. Scientia Horticulturae 77, 89–107.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brouquisse R, James F, Pradet A, Raymond P (1992) Asparagine metabolism and nitrogen distribution during protein degradation in sugar-starved maize roots. Planta 188, 384–395. open url image1

Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang H-S , et al . (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. The Plant Cell 14, 559–574.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chung B-C, Lee SY, Oh SA, Rhew TH, Nam HG, Lee C-H (1997) The promoter activity of sen1, a senescence-associated gene of Arabidopsis, is repressed by sugars. Journal of Plant Physiology 151, 339–345. open url image1

Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, Levine A, Granot D (1999) Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. The Plant Cell 11, 1253–1266.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Davies KM, King GA (1993) Isolation and characterisation of a cDNA clone for a harvest induced asparagine synthetase from Asparagus officinalis L. Plant Physiology 102, 1337–1340.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Davies KM, Seelye JF, Irving DE, Borst WM, Hurst PL, King GA (1996) Sugar regulation of harvest-related genes in asparagus. Plant Physiology 111, 877–883.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Genix P, Bligny R, Martin J-B, Douce R (1990) Transient accumulation of asparagine in sycamore cells after a long period of sucrose starvation. Plant Physiology 94, 717–722. open url image1

Gibson SI (2000) Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiology 124, 1532–1539.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gleave AP (1992) A versatile binary vector system with a T-DNA organisational structure conductive to efficient integration of cloned DNA into the plant genome. Plant Molecular Biology 20, 1203–1207.
PubMed |
open url image1

Graham IA, Baker CJ, Leaver CJ (1994) Analysis of the malate synthase gene promoter by transient expression and gel retardation assays. The Plant Journal 6, 893–902.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Graham IA, Denby KJ, Leaver CJ (1994) Carbon catabolite repression regulates glyoxylate gene expression in cucumber. The Plant Cell 6, 761–772.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Halford NG, Purcell PC, Hardie DG (1999) Is hexokinase really a sugar sensor in plants? Trends in Plant Science 4, 117–120.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Research 27, 297–300.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Irving DE, Shingleton GJ, Hurst PL, Seelye SF, Sinclair BK (2000) Inhibition of hexokinase and expression of asparagine synthetase and β-galactosidase genes during sugar feeding and starvation of asparagus (Asparagus officinalis) callus cultures. New Zealand Journal of Crop and Horticultural Science 28, 81–88. open url image1

Jang JC, Sheen J (1994) Sugar sensing in higher plants. The Plant Cell 6, 1665–1679.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6, 3901–3907.
PubMed |
open url image1

Jefferson RA, Wilson KJ (1991) The GUS gene fusion systems. ‘Plant molecular biology manual’. (Eds SB Gelvin, RA Schilperoort, DPS Verma) pp. 1–33. (Kluwer: Dordrecht, The Netherlands)

King GE, Davies KM (1992) Identification, cDNA cloning, and analysis of mRNAs having altered expression in tips of harvested asparagus spears. Plant Physiology 100, 1661–1669.
Crossref | GoogleScholarGoogle Scholar | open url image1

King GA, Davies KM, Stewart RJ, Borst WM (1995) Similarities in gene expression during the postharvest-induced senescence of spears and natural foliar senescence of asparagus. Plant Physiology 108, 125–128.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Koch KE, Ying Z, Wu Y, Avigne WT (2000) Multiple paths of sugar sensing and sugar/oxygen overlap for genes of sucrose and ethanol metabolism. Journal of Experimental Botany 51, 417–427.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers: transport and sugar sensing. The Plant Cell 11, 707–726.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lam H-M, Peng SS-Y, Coruzzi GM (1994) Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana.  Plant Physiology 106, 1347–1357.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lam HM, Coschigano KT, Oliveira IC, Melooliveira R, Coruzzi GM (1996) The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 47, 569–593.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lam HM, Hsieh MH, Coruzzi G (1998) Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana.  The Plant Journal 16, 345–353.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lin T-P, Caspar T, Somerville C, Preiss J (1988) Isolation and characterisation of a starchless mutant of Arabidopsis thaliana (L.) Heynh lacking ADP-Glc pyrophosphorylase activity. Plant Physiology 86, 1131–1135. open url image1

Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300, 332–336.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Moyle RL, Davies KM, King GA, Farnden KJF (1996) Nucleotide sequence of the asparagine synthetase gene (Accession No. X99552) from Asparagus officinalis L. Plant Physiology 112, 1397.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mukhopadhyay S, Desjardins Y (1994) Direct gene transfer to protoplasts of two genotypes of Asparagus officinalis L. by electroporation. Plant Cell Reports 13, 421–424.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ngai N, Tsai FY, Coruzzi G (1997) Light-induced transcriptional repression of the pea AS1 gene — identification of cis-elements and transfactors. The Plant Journal 12, 1021–1034.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Noh Y-S, Amasino RM (1999) Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Molecular Biology 41, 181–194.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Noh Y-S, Amasino RM (1999) Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus.  Plant Molecular Biology 41, 195–206.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Oh SA, Park JH, Lee GI, Paek KH, Park SK, Nam HG (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana.  The Plant Journal 12, 527–535.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Osuna D, Galvez-Valdivieso G, Piedras P, Pineda M, Aguilar M (2001) Cloning, characterisation and mRNA expression analysis of PVAS1, a type I asparagine synthetase gene from Phaseolus vulgaris.  Planta 213, 402–410.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Park JH, Oh SA, Kim YH, Woo HR, Nam HG (1998) Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis.  Plant Molecular Biology 37, 445–454.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Peterson GL (1977) A simplification of the protein assay method of Lowry et al., which is more generally applicable. Analytical Biochemistry , 346–356.
Crossref | GoogleScholarGoogle Scholar | open url image1

Quirino BF, Noh Y-S, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends in Plant Science 5, 278–282.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sambrook, J , Fritsch, EF ,  and  Maniatis, T (1989). ‘Molecular cloning: a laboratory manual.’ 2nd edn . (Cold Spring Harbor Laboratory Press: New York)

Sarah CJ, Graham IA, Reynolds SJ, Leaver CJ, Smith SM (1996) Distant cis-acting elements direct the germination and sugar response of the cucumber malate synthase gene. Molecular and General Genetics 250, 153–161.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Shi LF, Twary SN, Yoshioka H, Gregerson RG, Miller SS, Samac DA, Gantt JS, Unkefer PJ, Vance CP (1997) Nitrogen assimilation in alfalfa — isolation and characterisation of an asparagine synthetase gene showing enhanced expression in root nodules and dark-adapted leaves. The Plant Cell 9, 1339–1356.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Smeekens S (2000) Sugar-induced signal transduction in plants. Annual Review of Plant Physiology and Plant Molecular Biology 51, 49–81.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Toyofuku K, Umemura T, Yamaguchi T (1998) Promoter elements required for sugar repression of the Amy3D gene for α-amylase in rice. FEBS Letters 428, 275–280.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tsai F-Y, Coruzzi GM (1990) Dark-induced and organ-specific expression of two asparagine synthetase genes in Pisum sativum.  EMBO Journal 9, 323–332.
PubMed |
open url image1

Tsai F-Y, Coruzzi GM (1991) Light represses the transcription of asparagine synthetase genes in photosynthetic and non-photosynthetic organs of plants. Molecular and Cellular Biology 11, 4966–4972.
PubMed |
open url image1

Weaver LM, Gan S, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Molecular Biology 37, 455–469.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Winichayakul S, Moyle RL, Coupe SA, Davies KM, Farnden KJF (2004) Analysis of the asparagus (Asparagus officinalis L.) asparagine synthetase gene promoter identifies evolutionary conserved cis-regulatory elements that mediate Suc-repression. Functional Plant Biology 31, 63–72.
Crossref |
open url image1