Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Studies on spatial distribution of nickel in leaves and stems of the metal hyperaccumulator Stackhousia tryonii Bailey using nuclear microprobe (micro-PIXE) and EDXS techniques

Naveen P. Bhatia A B D , Kerry B. Walsh A , Ivo Orlic B , Rainer Siegele B , Nanjappa Ashwath A and Alan J. M. Baker C
+ Author Affiliations
- Author Affiliations

A Primary Industries Research Centre, School of Biological and Environmental Sciences, Central Queensland University, Rockhampton, Qld 4702, Australia.

B Environment Division, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia.

C School of Botany, The University of Melbourne, Vic. 3010, Australia.

D Corresponding author. Email: naveen.bhatia@ansto.gov.au

Functional Plant Biology 31(11) 1061-1074 https://doi.org/10.1071/FP03192
Submitted: 22 October 2003  Accepted: 21 June 2004   Published: 18 November 2004

Abstract

Stackhousia tryonii Bailey is one of the three nickel hyperaccumulators reported from Australia. It is a rare, herbaceous plant that accumulates (Ni) both in leaf and stem tissues. Localisation of Ni in leaf and stem tissues of S. tryonii was studied using two micro-analytical techniques, energy dispersive X-ray spectrometry (EDXS) and micro-proton-induced X-ray emission spectrometry (micro-PIXE). Dimethylglyoxime complexation of Ni was also visualised by bright- and dark-field microscopy, but this technique was considered to create artefacts in the distribution of Ni. Energy dispersive X-ray spectrometric analysis indicated that guard cells possessed a lower Ni concentration than epidermal cells, and that epidermal cells and vascular tissue contained higher levels of Ni than mesophyll, as reported for other Ni hyperaccumulators. The highest Ni concentration was recorded (PIXE quantitative point analysis) in the epidermal cells and vascular tissue (5400 μg g–1 DW), approximately double that recorded in palisade cells (2500 μg g–1 DW). However, concentrations were variable within these tissues, explaining, in part, the similarity between average Ni concentrations of these tissues (as estimated by region selection mode). Stem tissues showed a similar distribution pattern as leaves, with relatively low Ni concentration in the pith (central) region. The majority of Ni (73–85% for leaves; 80–92% for stem) was extracted from freeze-dried sections by water extraction, suggesting that this metal is present in a highly soluble and mobile form in the leaf and stem tissues of S. tryonii.

Key words: elemental mapping, metal hyperaccumulation, micro-PIXE, nickel, nuclear microprobe analysis.


Acknowledgments

A merit scholarship (UPRA) to NPB by the Central Queensland University and financial assistance (Grant No. 450; 02 / 001P) for the present work by the Australian Institute of Nuclear Science and Engineering (AINSE) is gratefully acknowledged. We also acknowledge the technical assistance of Mr Barry Hood (laboratory work) and Mr V. McCafferty (SEM work), and the assistance of Queensland Parks and Wildlife Services (Central Region) for granting a scientific permit to collect S. tryonii material from its natural habitat. We thank two anonymous reviewers for their constructive comments, incorporated into the final text.


References


Baker AJM (1981) Accumulators and excluders — strategies in the response of plants to heavy metals. Journal of Plant Nutrition 3, 643–654. open url image1

Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements — a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81–126. open url image1

Baker, AJM , McGrath, SP , Reeves, RD ,  and  Smith, JAC (2000). Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In ‘Phytoremediation of contaminated soil and water’. pp. 85–107. (CRC Press: Boca Raton)

Batianoff, GN ,  and  Specht, RL (1992). Queensland (Australia) serpentinite vegetation. In ‘The vegetation of ultramafic (serpentine) soils’. Proceedings of the first international conference on serpentine ecology. pp. 109–128. (Intercept Ltd: Andover)

Batianoff GN, Reeves RD, Specht RL (1990) Stackhousia tryonii Bailey: a nickel-accumulating serpentine-endemic species of Central Queensland. Australian Journal of Botany 38, 121–130. open url image1

Bhatia NP (2003) Ecophysiology of nickel hyperaccumulation in Stackhousia tryonii Bailey. PhD thesis (Central Queensland University: Australia)

Bhatia NP, Bhatia P, Ashwath N (2002) Asexual propagation of Stackhousia tryonii: a step towards restoration of a rare metallophyte. Australian Journal of Botany 50, 577–582.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bhatia NP, Orlic I, Siegele R, Ashwath N, Baker AJM, Walsh KB (2003) Elemental mapping using PIXE shows the main pathway of nickel movement is principally symplastic within the fruit of the hyperaccumulator Stackhousia tryonii. New Phytologist 160, 479–488.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bidwell SD (2001) Hyperaccumulation of metals in Australian native plants. PhD thesis (The University of Melbourne: Australia)

Bidwell SD, Crawford SA, Woodrow IE, Sommer-Knudsen J, Marshall AT (2004) Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell. Plant, Cell and Environment 27, 705–716.
Crossref | GoogleScholarGoogle Scholar | open url image1

Boominathan R, Doran PM (2003) Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. Journal of Biotechnology 101, 131–146.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Boyd, RS ,  and  Martens, SN (1992). The raison d’Être for metal hyperaccumulation by plants. In ‘The vegetation of ultramafic (serpentine) soils’. Proceedings of the first international conference on serpentine ecology. pp. 279–290. (Intercept Ltd: Andover)

Davie, H ,  and  Benson, JS (1997). The serpentine vegetation of the Woko-Glenrock region, New South Wales, Australia. In ‘The ecology of ultramafic and metalliferous areas’. Proceedings of the second international conference on serpentine ecology. pp. 155–162. (ORSTOM: Nouméa, New Caledonia)

Farago ME, Mahmoud IEDAW (1983) Plants that accumulate metals. (Part VI): Further studies of an Australian nickel accumulating plant. Minerals and the Environment 5, 113–121. open url image1

Forster, BA ,  and  Baker, DE (1997). Characterisation of the serpentinite soils of central Queensland, Australia. In ‘The ecology of ultramafic and metalliferous areas’. Proceedings of the second international conference on serpentine ecology. pp. 27–37. (ORSTOM: Nouméa, New Caledonia)

Frey B, Keller C, Zierold K, Schulin R (2000) Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant, Cell and Environment 23, 675–687.
Crossref | GoogleScholarGoogle Scholar | open url image1

Grime GW, Dawson M (1995) Recent developments in data acquisition and processing on the Oxford scanning proton microprobe. Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms 104, 107–113.
Crossref | GoogleScholarGoogle Scholar | open url image1

Heath SM, Southworth D, d’allura JA (1997) Localization of nickel in epidermal subsidiary cells of leaves of Thlaspi montanum var. siskiyouense (Brassicaceae) using energy-dispersive X-ray microanalysis. International Journal of Plant Sciences 158, 184–188.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kelly PC, Brooks RR, Dilli S (1975) Preliminary observations on the ecology and plant chemistry of some nickel-accumulating plants in New Caledonia. Proceedings of the Royal Society of London. Section B 189, 69–80. open url image1

Krämer U, Cotter Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelators in plants that accumulate nickel. Nature 379, 635–638.
Crossref | GoogleScholarGoogle Scholar | open url image1

Krämer U, Grime GW, Smith JAC, Hawes CR, Baker AJM (1997) Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms 130, 346–350.
Crossref | GoogleScholarGoogle Scholar | open url image1

Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiology 122, 1343–1353.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212, 75–84.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. Journal of Experimental Botany 52, 2291–2300.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Küpper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiology 119, 305–311.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lombi E, Zhao FJ, Fuhrmann M, Ma LQ, McGrath SP (2002) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytologist 156, 195–203.
Crossref | GoogleScholarGoogle Scholar | open url image1

Malmqvist, KG (1995). Biological and Medical Application. In ‘Particle-induced X-ray emission spectrometry, chemical analysis series. Volume 133’. pp. 167–236. (John Wiley and Sons, Inc: New York)

Mesjasz-Przybylowicz J, Balkwill K, Przybylowicz WJ, Annegarn HJ (1994) Proton microprobe and X-ray fluorescence investigations of nickel distribution in serpentine flora from South Africa. Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms 89, 208–212.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mesjasz-Przybylowicz, J , Balkwill, K , Przybylowicz, WJ , Annegarn, HJ ,  and  Rama, DBK (Eds) (1996a). Similarity of nickel distribution in leaf tissue of two distantly related hyperaccumulating species. In ‘The Biodiversity of African plants’. a. pp. 331–335. (Kluwer Academic Publishers: Dordrecht, The Netherlands)

Mesjasz-Przybylowicz J, Przybylowicz WJ, Prozesky VM, Pineda CA (1996b) Elemental distribution in a leaf of Senecio coronatus. Proceedings of the Microscopy Society of South Africa 26, 68. open url image1

Mesjasz-Przybylowicz, J , Przybylowicz, WJ ,  and  Prozesky, VM (1997a). Nuclear microprobe investigation of Ni distribution in organs and cells of hyperaccumulating plants. In ‘The ecology of ultramafic and metalliferous areas’. Proceedings of the second international conference on serpentine ecology. a. pp. 223–224. (ORSTOM: Nouméa, New Caledonia)

Mesjasz-Przybylowicz J, Przybylowicz WJ, Prozesky VM, Pineda CA (1997b) Quantitative micro-PIXE comparison of elemental distribution in Ni-hyperaccumulating and non-accumulating genotypes of Senecio coronatus. Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms 130, 368–373.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mesjasz-Przybylowicz J, Przybylowicz WJ, Rama DBK, Pineda CA (1997c) Elemental distribution in the Ni hyperaccumulator — Senecio anomalochrous. Proceedings of the Microscopy Society of South Africa 27, 89. open url image1

Mesjasz-Przybylowicz J, Przybylowicz WJ, Pineda CA (1998) Elemental distribution in young leaves of the Ni hyperaccumulator — Berkheya coddii. Proceedings of the Microscopy Society of South Africa 28, 57. open url image1

Mesjasz-Przybylowicz J, Przybylowicz WJ, Rama DBK, Pineda CA (2001a) Elemental distribution in Senecio anomalochrous, a Ni hyperaccumulator from South Africa. South African Journal of Science 97, 593–595. open url image1

Mesjasz-Przybylowicz J, Przybylowicz WJ, Pineda CA (2001b) Nuclear microprobe studies of elemental distribution in apical leaves of the Ni hyperaccumulator Berkheya coddii. South African Journal of Science 97, 591–593. open url image1

Mizuno N, Nosaka S, Mizuno T, Horie K, Obata H (2003) Distribution of Ni and Zn in the leaves of Thlaspi japonicum growing on ultramafic soil. Soil Science and Plant Nutrition 49, 93–97. open url image1

Murray, CG (1969). The petrology of the ultramafic rocks of the Rockhampton district, Queensland. Geological Survey of Queensland Publication No. 343.

Noell, I ,  and  Morris, D (1996). Localisation of hyperaccumulated nickel in Stackhousia tryonii using electron-probe microanalysis. In ‘Proceedings of microscopy and microanalysis’. pp. 92–93. (San Francisco Press Inc: San Francisco)

Noell, I ,  and  Morris, D (1997). Nickel concentrations and plant defence in Stackhousia tryonii. In ‘The ecology of ultramafic and metalliferous areas’. Proceedings of the second international conference on serpentine ecology. pp. 109–110. (ORSTOM: Nouméa, New Caledonia)

Przybylowicz WJ, Pineda CA, Prozesky VM, Mesjasz-Przybylowicz J (1995) Investigation of Ni hyperaccumulation by true elemental imaging. Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms 104, 176–181.
Crossref | GoogleScholarGoogle Scholar | open url image1

Przybylowicz WJ, Mesjasz-Przybylowicz J, Pineda CA, Churms CL, Springhorn KA, Prozesky VM (1999) Biological applications of the NAC nuclear microprobe. X-Ray Spectrometry 28, 237–243. open url image1

Przybylowicz WJ, Mesjasz-Przybylowicz J, Pineda CA, Churms CL, Ryan CG, Prozesky VM, Frei R, Slabbert JP, Padayachee J, Reimold WU (2001) Elemental mapping using proton-induced X-rays. X-Ray Spectrometry 30, 156–163. open url image1

Psaras GK, Constantinidis T, Cotsopoulos B, Manetas Y (2000) Relative abundance of nickel in the leaf epidermis of eight hyperaccumulators: evidence that the metal is excluded from both guard cells and trichomes. Annals of Botany 86, 73–78.
Crossref | GoogleScholarGoogle Scholar | open url image1

Reeves, RD (1992). Hyperaccumulation of nickel by serpentine plants. In ‘The vegetation of ultramafic (serpentine) soils’. Proceedings of the first international conference on serpentine ecology. pp. 253–277. (Intercept Ltd: Andover)

Reeves RD, Baker AJM, Borhidi A, Berazain R (1996) Nickel accumulating plants from the ancient serpentine soils of Cuba. New Phytologist 133, 217–224. open url image1

Reeves RD, Baker AJM, Borhidi A, Berazain R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Annals of Botany 83, 29–38.
Crossref | GoogleScholarGoogle Scholar | open url image1

Robinson BH, Lombi E, Zhao FJ, McGrath SP (2003) Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytologist 158, 279–285. open url image1

Ryan CG (2001) Developments in dynamic analysis for quantitative PIXE true elemental imaging. Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms 181, 170–179.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schoonhoven, LM , Jermy, T ,  and  van Loon, JJA (1998). ‘Insect-plant biology: from physiology to evolution.’ (Chapman and Hall: London)

Severne BC (1974) Nickel accumulation by Hybanthus floribundus. Nature 248, 807–808.
PubMed |
open url image1

Vázquez MD, Barceló J, Poschenrieder C, Madico J, Hatton P, Baker AJM, Cope GH (1992) Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. Journal of Plant Physiology 140, 350–355. open url image1

Vázquez MD, Poschenrieder C, Barceló J, Baker AJM, Hatton P, Cope GH (1994) Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J and C Presl. Botanica Acta 107, 243–250. open url image1

Vergnano Gambi O (1967) Primi dati sulla localizzazione istologica del nichel in Alyssum bertolonii desv. Giornale Botanico Italiano 101, 59–60. open url image1

Witkowski ETF, Weiersbye-Witkowski IM, Przybylowicz WJ, Mesjasz-Przybylowicz J (1997) Nuclear microprobe studies of elemental distributions in dormant seeds of Burkea africana. Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms 130, 381–387.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zhao FJ, Lombi E, Breedon T, McGrath SP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant, Cell and Environment 23, 507–514.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zierold, K ,  and  Hagler, HK (1989). ‘Electron probe microanalysis applications in biology and medicine.’ (Springer Verlag: Berlin)