Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
CORRIGENDUM

Corrigendum to: The relative limitation of photosynthesis by mesophyll conductance in co-occurring species in a temperate rainforest dominated by the conifer Dacrydium cupressinum

Evan H. De Lucia, Michael J. Clearwater and David Whitehead

Functional Plant Biology 31(7) 759 - 759
Published: 26 July 2004

Abstract

The capacity to conduct CO2 from the intercellar spaces in leaves to the site of fixation (mesophyll conductance, gm) may pose a significant limitation to photosynthesis. Dacrydium cupressinum Sol. ex Lamb. (rimu), a native conifer of New Zealand, and other members of the Podocarpaceae evolved during the Jurassic when the partial pressure of CO2 exceeded 200 Pa. This species has low rates of photosynthesis and high levels of leaf nitrogen, which have led to the hypothesis that low gm restricts photosynthesis. Mesophyll conductance was estimated from gas-exchange and fluorescence measurements for this and other co-occurring tree species [Prumnopitys ferruginea D. Don (miro), Weinmannia racemosa L.f. (kāmahi), Meterosideros umbellata Cav. (rata)]. Pinus radiata D. Don (radiata pine) and Phaseolus vulgaris L. (bean) were included to provide comparisons with a rapidly growing tree and herbaceous plant with relatively high photosynthetic rates. Mesophyll conductance was not statistically different among indigenous tree species but was lowest for D. cupressinum. This species also had the lowest ratio of mesophyll to stomatal conductance, gm / gst and was the only species where the decline in partial pressure of CO2 was greater from the intercellular air space to the site of fixation (16.3 Pa) than between the bulk air and the intercellular spaces (8.8 Pa), providing support for the hypotheses that low gm limits photosynthesis in this species. As a group, conifers had marginally lower gm and gm / gst ratio than angiosperms, but this difference was strongly influenced by the high values for Phaseolus vulgaris. That co-occurring members of the Podocarpaceae operated differently suggests that low gm may reflect a response to evolutionary pressures other than high atmospheric CO2 partial pressure.

Keywords: CO2 compensation point, day respiration, gas exchange, intercellular CO2.

https://doi.org/10.1071/FP03141_CO

© CSIRO 2004

Committee on Publication Ethics


Export Citation Get Permission