Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum

Alaina J. Garthwaite, Roland von Bothmer and Timothy D. Colmer

Functional Plant Biology 30(8) 875 - 889
Published: 22 August 2003

Abstract

Growth, root aerenchyma, and profiles of radial O2 loss (ROL) along adventitious roots were evaluated in 35 'wild' Hordeum accessions and cultivated barley (H. vulgare L. ssp. vulgare) when grown in stagnant nutrient solution (deoxygenated and containing 0.1% agar). When grown in stagnant solution, accessions from wetland and 'intermediate' habitats were superior, compared with accessions from non-wetland habitats, in maintaining relative growth rate, tillering, and adventitious root mass. Constitutive aerenchyma formation in adventitious roots was ≥ 10% in 22 accessions (cf. H. vulgare at 2%). When grown in stagnant solution, aerenchyma was ≥  20% in the adventitious roots of 14 accessions (cf. H. vulgare at 12%). Variation among the accessions in the volume of aerenchyma formed when grown in aerated or stagnant solution was not determined by the waterlogging regime of the species' natural habitat. However, the genus Hordeum comprises four genomes and when grown in stagnant solution accessions with the X genome formed, on average, 22% aerenchyma in adventitious roots (50 mm behind apex), whereas those with the H genome averaged 19%, and those with the Y or I genomes averaged 16 and 15%, respectively. Sixteen accessions formed a barrier to ROL in the basal region of adventitious roots when grown in stagnant solution. The formation of a barrier to radial O2 loss was predominant in accessions from wet habitats, and absent in accessions from non-wetland habitats. In addition, this trait was only present in accessions with the X or H genomes. The combination of aerenchyma and a barrier to ROL enhances the longitudinal diffusion of O2 within roots towards the apex. The possibility of a link between having a barrier to ROL and the X or H genomes in Hordeum species might, in future studies, enable a genetic analysis of this important trait.

Keywords: adventitious roots, aerenchyma, diversity, Hordeum vulgare, O2-deficiency, radial O2 loss, root porosity, wild Triticeae.

https://doi.org/10.1071/FP03058

© CSIRO 2003

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions