Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover
Evelyn S. Krull, Jeffrey A. Baldock and Jan O. Skjemstad
Functional Plant Biology
30(2) 207 - 222
Published: 17 February 2003
Abstract
This paper reviews current knowledge of soil organic carbon (SOC) dynamics with respect to physical protection, soil moisture and temperature, and recalcitrant carbon fractions (such as charcoal) in predominantly agricultural soils. These factors are discussed within the framework of current soil organic matter models. The importance of soil structure in the stabilisation of organic residues through physical protection has been documented previously in various studies. In addition, changes in soil structure associated with tillage can significantly affect soil organic matter decomposition rates. The concept of physical protection has been incorporated into several soil carbon models as a function of soil texture. While soil texture can affect the soil's capacity for aggregation and adsorption, factors such as soil moisture and temperature may further enhance or reduce the extent of physical protection. While adsorption and aggregation can slow decomposition processes, it is unlikely that these processes are solely responsible for the high mean residence times measured in biologically active surface soils. Accordingly, chemical recalcitrance appears to be the only mechanism by which soil organic carbon can be protected for long periods of time.https://doi.org/10.1071/FP02085
© CSIRO 2003