

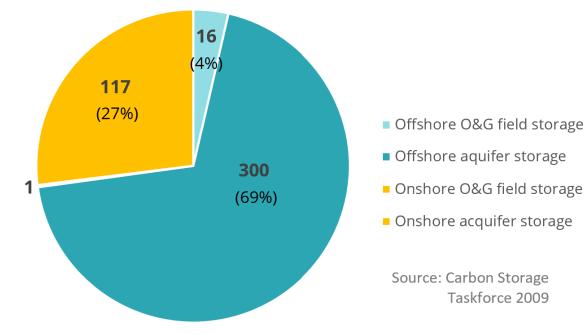
Development of long-distance & large-scale CCS value chain using liquefied CO₂ ship transportation

23rd May 2024

Daein Cha Managing Director

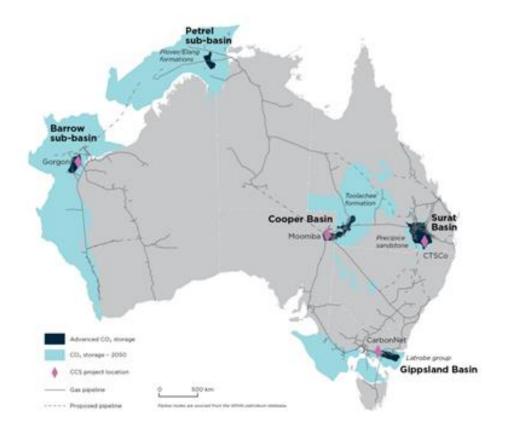
Agenda

- Context
- Technical
- Commercial
- Policy & Regulation
- Conclusion

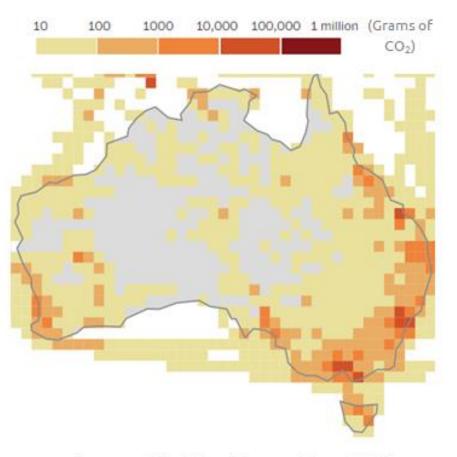


Why CO₂ Storage in Australia?

- With net emissions in 2020 being ~500 million tonnes CO_2 -e*, Australia has ~870 years worth of storage.
- \odot 73% (316 billion tonnes) of its CO₂ storage resource capacity resides offshore.
- \odot CO₂ storage acreages accessible, with well established CCS legislation & regulation.


* Source: "Australia's NDC Communication 2022" (Commonwealth of Australia)

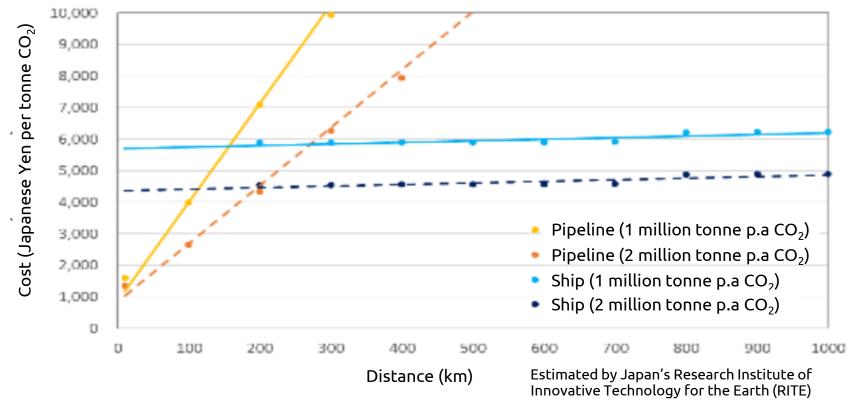
Total 434 Billion Tonnes


Key Challenge for Reducing Emissions is "Distance"

Prospective CO2 Storage Sites

Source: Commonwealth of Australia (DISER) 2021

CO₂ Emissions (2001 to 2012 mean)


Source: The Washington Post 2015

deep(C)store

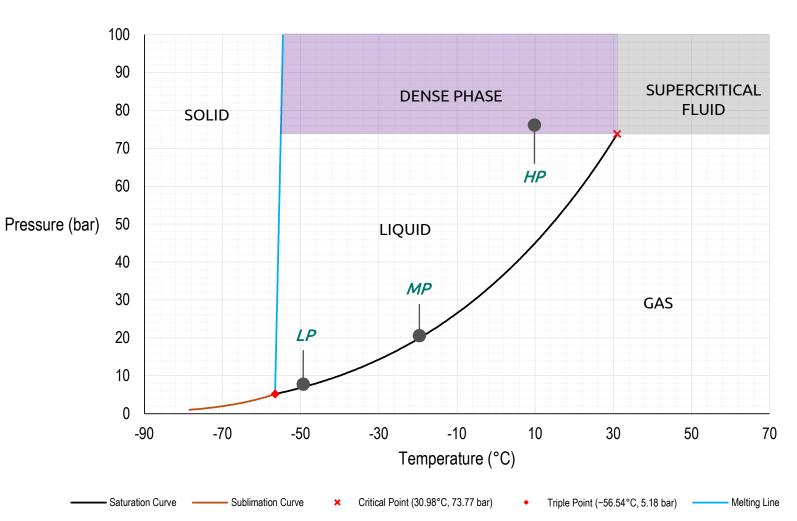
Relationship of CO₂ transport volume, distance & cost

• "Upon exceeding 200km, shipping can be lower cost."*

 "Technical capability to manage 'low temperature & low pressure' large volume liquefied CO₂ ship transportation is essential." *

* From "CCS Long-term CCS Roadmap Investigative Commission Interim Summary" report (page 17), Japanese Government (METI), 2022

o deep(C)store


Key technical decisions

- Liquefaction condition
- \odot CO₂ supply specification
- LCO₂ ship parcel size

Liquefaction condition

- Pressure ↑ = tank wall thickness & tank unit cost ↑
- <u>LP & MP</u>: Light ends reduced to soluble levels (CO₂ ~99+%).
 BOG from liquefaction needs to be managed.
- <u>HP</u>: Light ends will not drop out (CO₂~96+%)

deep()store

CO₂ specification

- DCCEEW issued the Interim National Action List.
- Prior to liquefaction: Identical for LP, MP & HP
- Post liquefaction: Provided specification is adhered to prior to liquefaction, there is no requirement for compositional control

deepC Store invites participation in DCCEEW's stakeholder consultation to finalise National Action List.

Interim National Action List for offshore carbon dioxide sequestration

LCO₂ ship parcel size

- Key premises
 - Deliver full cargoes
 - Unloading per ship < 24 hours
- Optimise unit cost & operability
 - Annual offtake volume
 - Distance
 - Number of ships & utilisation rate
 - Utilisation rate & tank size of facilities
 - Ship design standardisation

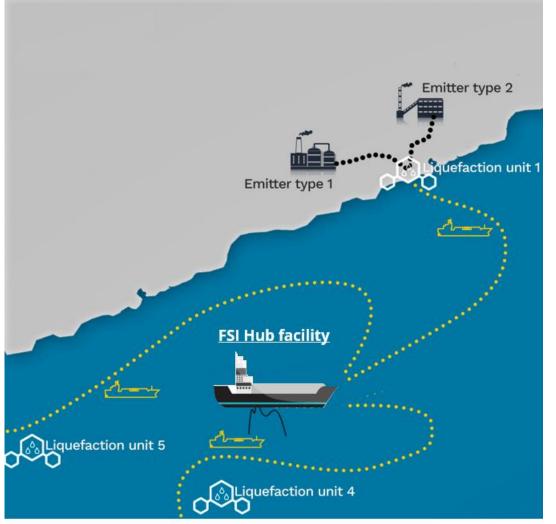


Image of CStore1 (courtesy to Technip Energies)

deep(C)store

Key Commercial Considerations

• Business models

• Key EPC & operations risks & opportunities

10

Business models

- ⊙ 230 MTPA (>1% annual global emissions) used by fertiliser industry, EOR, etc (IEA, 2019).
- Setting aside CO₂ being used, captured CO₂ has limited commercial value. Instead, value is derived from regulatory constructs that allow for monetary value generation:
 - carbon tax
 - "cap & trade" mechanism
 - tax credit
 - subsidy for CCS

Key EPC & operations risks & opportunities

- Majority are known & manageable by industry.
- "Who owns the CO₂ injected" is also important.

Risks	EPC cost / schedule overrun & performance risks		
	Delivery / offtake risks (volume & specification)		
	Asset damage / loss risks (FM & non-FM events for		
	Payment risks		
	CO ₂ price risk	+	
	Environmental (remediation & 3 rd party) liabilities f		
	Decommissioning liabilities		
	Long-term sequestration liability	•	CCS Specific
Opportunities	Under-run of EPC schedule &/or cost		
	Excess CCS volume / capacity		
	CO ₂ price upside	•	
	Residual value of facilities after initial contract dur		

deep(C)store

Key Policy & Regulatory Considerations

- Comparative assessment across key jurisdictions
- Actions for nations to enable transboundary CCS

deep(C

Comparative assessment across key jurisdictions*

● USA, EU, others are offering favourable incentives.

• Access to funding & talent is influenced by global competition.

	EU	USA	Australia	Malaysia	Indonesia	Japan
Enabling legislation and rules						
Cost reduction measures						
Carbon pricing measures						
Strategic signalling by government						

Sufficient measures in place

Measures insufficient

* Based on deepC Store's assessment using IEA's categories from "CCUS Policies and Business Models" (IEA, 2023)

deep()store

Actions for nations to enable transboundary CCS

• Submit instrument of ratification & declaration of provisional application to IMO

• Execute bilateral agreements between CO₂ supply & storage nations

deepC Store invites support to earn social license for transboundary CCS

 Developing large-scale CCS values chains via LCO₂ ship transportation is essential to unlock the full potential of offering CCS to all industrial sectors.

 Ongoing collaborative effort is needed among governments, CO₂ suppliers, CCS project proponents, & industry to enable domestic & transboundary CCS value chains.

Acknowledgements

- ⊙ Members of deepC Store Pty Ltd
- CStore1 Partners (in alphabetical order)
 - ABL Group
 - CSIRO
 - JX Nippon Oil & Gas Exploration Corporation
 - Kyushu Electric Power
 - Mitsui OSK Lines
 - Osaka Gas, Osaka Gas Australia
 - Technip Energies
 - Toho Gas
- PGS ASA, & Azuli (Australia) Pty Ltd

Thank you

deepC Store Pty Ltd ACN: 653 059 164 Address: Level 8, 167 St Georges Terrace, Perth WA 6000, Australiaa deepcstore.com