3D unconstrained and geologically constrained stochastic inversion of airborne vertical gravity gradient data
Euloge Budet Tchikaya 1 3 Michel Chouteau 1 Pierre Keating 2 Pejman Shamsipour 21 École Polytechnique; Départ. Génies CG&M, C.P. 6079, succ. Centre-Ville - Montréal, Québec, Canada, H3C 3A7.
2 Geological Survey of Canada, 615 Booth Street, Ottawa, Ontario, Canada, K1A 0E9.
3 Corresponding author. Email: euloge-budet.tchikaya@polymtl.ca
Exploration Geophysics 47(1) 67-84 https://doi.org/10.1071/EG14084
Submitted: 15 February 2014 Accepted: 9 December 2014 Published: 24 February 2015
Abstract
We present an inversion tool for airborne gravity gradient data that yields a 3D density model using stochastic methods i.e. cokriging and conditional simulation. This method uses geostatistical properties of the measured gravity gradient to estimate a 3D density model whose gravity response fits the measured gravity gradient anomaly. Linearity between gravity gradient data and density allows estimation of the model (density) covariance using observed data, i.e. we adjust iteratively the density covariance matrix by fitting experimental and theoretical gravity gradient covariance matrices. Inversion can be constrained by including densities known at some locations. In addition we can explore various reasonable solutions that honour both the estimated density covariance model and the gravity gradient data using geostatistical simulation.
The proposed method is first tested with two synthetic datasets generated from a sharp-boundary model and a smooth stochastic model respectively. The results show the method to be capable of retrieving models compatible with the true models; it also allows the integration of complex a priori information. The technique is then applied to gravity gradient survey data collected for the Geological Survey of Canada in the area of McFaulds Lake (Ontario, Canada) using the Falcon airborne gravity system. Unconstrained inversion returns a density model that is geologically plausible and the computed response exactly fits the observed gravity gradient anomaly.
Key words: cokriging, cosimulation, gradient gravity, inversion, 3D modelling.
References
Asli, M., Marcotte, D., and Chouteau, M., 2000, Direct inversion of gravity data by cokriging, in W. J. Kleingeld, and D. G. Krige, eds., Proceedings of the 6th International Geostatistics Congress – Geostat 2000: Geostatistical Association of South Africa, 64–73.Blakely, R. J., 1995, Potential theory in gravity and magnetic applications: Cambridge University Press.
Boggs, D. B., and Dransfield, M. H., 2004, Analysis of errors in gravity derived from the Falcon airborne gravity gradiometer, in R. J. L. Lane, ed., Airborne Gravity 2004 – Abstracts from the ASEG-PESA Airborne Gravity 2004 Workshop: Geoscience Australia Record 2004/18, 135–141.
Bosch, M, Meza, R, Jiménez, R, and Hönig, A, 2006, Joint gravity and magnetic inversion in 3D using Monte Carlo methods: Geophysics, 71, G153–G156
| Joint gravity and magnetic inversion in 3D using Monte Carlo methods:Crossref | GoogleScholarGoogle Scholar |
Boulanger, O., and Chouteau, M., 2001, Constraints in 3D gravity inversion: Geophysical Prospecting, 49, 265–280
| Constraints in 3D gravity inversion:Crossref | GoogleScholarGoogle Scholar |
Camacho, A. G., Montesinos, F. G., and Vieira, R., 2000, Gravity inversion by means of growing bodies: Geophysics, 65, 95–101
| Gravity inversion by means of growing bodies:Crossref | GoogleScholarGoogle Scholar |
Chasseriau, P., and Chouteau, M., 2003, 3D gravity inversion using a model of parameter covariance: Journal of Applied Geophysics, 52, 59–74
| 3D gravity inversion using a model of parameter covariance:Crossref | GoogleScholarGoogle Scholar |
Chen, J., and Macnae, J. C., 1997, Terrain corrections are critical for airborne gravity gradiometer data: Exploration Geophysics, 28, 21–25
| Terrain corrections are critical for airborne gravity gradiometer data:Crossref | GoogleScholarGoogle Scholar |
Chen, J. B., Liu, G. F., and Liu, H., 2012, Seismic imaging based on spectral differentiation matrix and GPU implementation: Journal of Applied Geophysics, 79, 1–5
| Seismic imaging based on spectral differentiation matrix and GPU implementation:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFalu7zI&md5=a87a015eeaad2cd89695d1ab29f657b6CAS |
Chilès, J. P., and Delfiner, P., 1999, Geostatistics: modeling spatial uncertainty: John Wiley and Sons.
Condi, F., and Talwani, M., 1999, Resolution and efficient inversion of gravity gradiometry: 69th Annual International Meeting, SEG, Expanded Abstracts, 18, 358–361.
Cox, L., and Zhdanov, M., 2007, Large-scale 3D inversion of HEM data using a moving footprint: SEG Technical Program Expanded Abstracts 2007, 467–471.
Davis, K., Kass, M. A., and Li, Y., 2011, Rapid gravity and gravity gradiometry terrain corrections via an adaptive quadtree mesh discretization: Exploration Geophysics, 42, 88–97
| Rapid gravity and gravity gradiometry terrain corrections via an adaptive quadtree mesh discretization:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVKrtLw%3D&md5=5de4a7d714a1f30bd249c6c7a4041abdCAS |
Dransfield, M., and Zeng, Y., 2009, Airborne gravity gradiometry: terrain corrections and elevation error: Geophysics, 74, I37–I42
| Airborne gravity gradiometry: terrain corrections and elevation error:Crossref | GoogleScholarGoogle Scholar |
Forsberg, R., 1984, A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modeling: Report no. 355, Department of Geodesic Science and Survey, Ohio State University, Columbus, OH, 129 pp.
Franklin, J., 1970, Well-posed stochastic extensions of ill posed linear problems: Journal of Mathematical Analysis and Applications, 31, 682–716
Gabell, A., Tuckett, H., and Olson, D., 2004, The GT-1A mobile gravimeter, in R. J. L. Lane, ed., Airborne Gravity 2004 – Abstracts from the ASEG-PESA Airborne Gravity 2004 Workshop: Geoscience Australia Record 2004/18, 55–61.
Gloaguen, E., Marcotte, D., Chouteau, M., and Perroud, H., 2005, Borehole radar velocity inversion using cokriging and cosimulation: Journal of Applied Geophysics, 57, 242–259
| Borehole radar velocity inversion using cokriging and cosimulation:Crossref | GoogleScholarGoogle Scholar |
Hammond, S., and Murphy, C. A., 2003, Air-FTG™: Bell Geospace’s gravity gradiometer – a description and case study: Preview, 105, 24–26
Hansen, T., Journel, A., Tarantola, A., and Mosegaard, K., 2006, Linear inverse Gaussian theory and geostatistics: Geophysics, 71, R101–R111
| Linear inverse Gaussian theory and geostatistics:Crossref | GoogleScholarGoogle Scholar |
Kass, M. A., and Li, Y., 2008, Practical aspects of terrain correction in airborne gravity gradiometry surveys: Exploration Geophysics, 39, 198–203
| Practical aspects of terrain correction in airborne gravity gradiometry surveys:Crossref | GoogleScholarGoogle Scholar |
Kirkendall, B., Li, Y., and Oldenburg, D., 2007, Imaging cargo containers using gravity gradiometry: IEEE Transactions on Geoscience and Remote Sensing, 45, 1786–1797
| Imaging cargo containers using gravity gradiometry:Crossref | GoogleScholarGoogle Scholar |
Le Ravalec, M., Noetinger, B., and Hu, L., 2000, The FFT moving average (FFT-MA) generator: an efficient numerical method for generating and conditioning Gaussian simulations: Mathematical Geology, 32, 701–723
| The FFT moving average (FFT-MA) generator: an efficient numerical method for generating and conditioning Gaussian simulations:Crossref | GoogleScholarGoogle Scholar |
Lee, J. B., 2001, FALCON gravity gradiometer technology: Exploration Geophysics, 32, 247–250
| FALCON gravity gradiometer technology:Crossref | GoogleScholarGoogle Scholar |
Lee, J., Li, Y., and Lane, R., 2005, Effects of data filtering on inversion of gravity gradient data: 75th Annual International Meeting, SEG, Expanded Abstracts, 24, 627–631.
Li, Y., 2001, 3-D inversion of gravity gradiometer data: 71st Annual International Meeting, SEG, Expanded Abstracts, 1470–1473.
Li, X., and Chouteau, M., 1998, Three-dimensional gravity modeling in all space: Surveys in Geophysics, 19, 339–368
| Three-dimensional gravity modeling in all space:Crossref | GoogleScholarGoogle Scholar |
Li, Y., and Oldenburg, D., 1998, 3-D inversion of gravity data: Geophysics, 63, 109–119
| 3-D inversion of gravity data:Crossref | GoogleScholarGoogle Scholar |
Lukaschewitsch, M., Maass, P., and Pidcock, M., 2003, Tikhonov regularization for electrical impedance tomography on unbounded domains: Inverse Problems, 19, 585–610
| Tikhonov regularization for electrical impedance tomography on unbounded domains:Crossref | GoogleScholarGoogle Scholar |
Lyrio, J. C. S., 2009, Processing and inversion of full tensor gravity gradiometry data: Ph.D. thesis, Colorado School of Mines.
Martinez, C. Y., Li, Y., Krahenbuhl, R., and Braga, M., 2010, 3D inversion of airborne gravity gradiometry for iron ore exploration in Brazil: 80thAnnual International Meeting, SEG, Expanded Abstracts, 1753–1757.
Menke, W., 1989, Geophysical data analysis: discrete inverse theory: Academic Press.
Metsaranta, R. T., and Houlé, M. G., 2011, McFaulds Lake area regional compilation and bedrock mapping project update, in Summary of Field Work and Other Activities 2011: Ontario Geological Survey, Open File Report 6270, 12-1–12-12.
Nowak, W, Tenkleve, S, and Cirpka, O. A., 2003, Efficient computation of linearized cross-covariance and auto-covariance matrices of interdependent quantities: Mathematical Geology, 35, 53–66
Pilkington, M., 2012, Analysis of gravity gradiometer inverse problems using optimal design measures: Geophysics, 77, G25–G31
| Analysis of gravity gradiometer inverse problems using optimal design measures:Crossref | GoogleScholarGoogle Scholar |
Rainsford, D., Houlé, M. G., Metsaranta, R., Keating, P., and Pilkington, M., 2011, An overview of the McFaulds Lake airborne gravity gradiometer and magnetic survey, Northwestern Ontario, in Summary of Field Work and Other Activities 2011: Ontario Geological Survey, Open File Report 6270, 39-1–39-8.
Rene, R. M., 1986, Gravity inversion using open, reject, and ‘shape-of-anomaly’ fill criteria: Geophysics, 51, 988–994
| Gravity inversion using open, reject, and ‘shape-of-anomaly’ fill criteria:Crossref | GoogleScholarGoogle Scholar |
Sander, S., Argyle, M., Elieff, S., Ferguson, S., Lavoie, V., and Sander, L., 2004, The AIRGrav airborne gravity system, in R. J. L. Lane, ed., Airborne Gravity 2004 - Abstracts from the ASEG-PESA Airborne Gravity 2004 Workshop: Geoscience Australia Record 2004/18, 49–54.
Shamsipour, P., Marcotte, D., Chouteau, M., and Keating, P., 2010a, 3D stochastic inversion of gravity data using cokriging and cosimulation: Geophysics, 75, I1–I10
| 3D stochastic inversion of gravity data using cokriging and cosimulation:Crossref | GoogleScholarGoogle Scholar |
Shamsipour, P., Chouteau, M., and Marcotte, D., 2010b, 3D stochastic inversion of borehole and surface gravity data using geostatistics: EGM 2010 International Workshop, 12–14 April, Capri, Italy.
Shamsipour, P., Chouteau, M., and Marcotte, D., 2011, 3D stochastic inversion of magnetic data: Journal of Applied Geophysics, 73, 336–347
| 3D stochastic inversion of magnetic data:Crossref | GoogleScholarGoogle Scholar |
Shamsipour, P., Marcotte, D., and Chouteau, M., 2012, 3D stochastic joint inversion of gravity and magnetic data: Journal of Applied Geophysics, 79, 27–37
| 3D stochastic joint inversion of gravity and magnetic data:Crossref | GoogleScholarGoogle Scholar |
Shamsipour, P., Marcotte, D., Chouteau, M., Rivest, M., and Bouchedda, A., 2013, 3D stochastic gravity inversion using non-stationary covariances: Geophysics, 78, G15–G24
| 3D stochastic gravity inversion using non-stationary covariances:Crossref | GoogleScholarGoogle Scholar |
Stott, G. M., Josey, S. D., Rainsford, D. R. B., and McIlraith, S. J., 2008, Precambrian geology and aeromagnetic data of the Hudson Bay and James Bay Lowlands Region with Precambrian basement depth estimates and related tables of geochronology and diamond-drill hole data: Ontario Geological Survey, Miscellaneous Release Data 233.
Tarantola, A., and Valette, B., 1982, Generalized nonlinear inverse problems solved using the least squares criterion: Reviews of Geophysics and Space Physics, 20, 219–232
| Generalized nonlinear inverse problems solved using the least squares criterion:Crossref | GoogleScholarGoogle Scholar |
Tchikaya, E., Chouteau, M., Keating, P., and Shamsipour, P., 2013, 3D inversion of airborne gravity gradient data using stochastic methods: 13th Biennal SAGA Meeting, 6–9 October 2013, Kruger Park, South Africa.
Thomson, S., Fountain, D., and Watts, T., 2007, Airborne geophysics – evolution and revolution, in B. Milkereit, ed., Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 19–37.
Uieda, L., and Barbosa, V. C. F., 2011, Robust 3D gravity gradient inversion by planting anomalous densities: 81st Annual International Meeting, SEG, Expanded Abstracts, 820–824.
van Kann, F., 2004, Requirements and general principles of airborne gravity gradiometers for mineral exploration, in R. J. L. Lane, ed., Airborne Gravity 2004 – Abstracts from the ASEG-PESA Airborne Gravity 2004 Workshop: Geoscience Australia Record 2004/18, 1–5.
van Leeuwen, E. H., 2000, BHP develops airborne gravity gradiometer for mineral exploration: The Leading Edge, 19, 1296–1297
| BHP develops airborne gravity gradiometer for mineral exploration:Crossref | GoogleScholarGoogle Scholar |
Vasco, D. W., and Taylor, C., 1991, Inversion of airborne gravity gradient data, southwestern Oklahoma: Geophysics, 56, 90–101
| Inversion of airborne gravity gradient data, southwestern Oklahoma:Crossref | GoogleScholarGoogle Scholar |
Witherly, K., 2005, New developments in airborne geophysics enhancing discovery effectiveness: The Ontario Prospector, Vol. 10, Issue 1.
Zhdanov, M. S., Ellis, R., and Mukherjee, S., 2004, Three-dimensional regularized focusing inversion of gravity gradient tensor component data: Geophysics, 69, 925–937
| Three-dimensional regularized focusing inversion of gravity gradient tensor component data:Crossref | GoogleScholarGoogle Scholar |