Discussion: On ‘Negative apparent resistivity in dipole–dipole electrical surveys’ (Jung, H.K., Min, D.J., Lee, H.S., Oh, S.H., and Chung, H., Exploration Geophysics, 40, 33–40)
In-Ky Cho 1 3 Jung-Ho Kim 2
+ Author Affiliations
- Author Affiliations
1 Department of Geophysics, Kangwon National University, Chuncheon, Kangwon-do 200-701, Korea.
2 Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), 92 Gwahang-no, Yuseong-gu, Daejeon 305-350, Korea.
3 Corresponding author. Email: choik@kangwon.ac.kr
Exploration Geophysics 41(1) 128-131 https://doi.org/10.1071/EG10005
Submitted: 29 September 2009 Accepted: 14 December 2009 Published: 19 February 2010
References
Beasley, C. W., and Ward, S. H., 1986, Three-dimensional mise-a-la-masse modeling applied to mapping fracture zones: Geophysics 51, 98–113.
| Crossref | GoogleScholarGoogle Scholar |
Cho, I. K., Kim, J. H., Chung, S. H., and Suh, J. H., 2002, Negative apparent resistivity in resistivity method: Mulli-Tamsa 5, 199–205.[in Korean with English abstract]
Pridmore, D. F., Hohmann, G. W., Ward, S. H., and Sill, W. R., 1981, An investigation of finite element modeling for electrical and electromagnetic data in three dimensions: Geophysics 46, 1009–1024.
| Crossref | GoogleScholarGoogle Scholar |
Snyder, D. D., 1976, A method for modeling the resistivity and IP response of two dimensional bodies: Geophysics 41, 997–1015.
| Crossref | GoogleScholarGoogle Scholar |
Spitzer, K., 1995, A 3-D finite difference algorithm for DC resistivity modeling using conjugate gradient methods: Geophysical Journal International 123, 903–914.
| Crossref | GoogleScholarGoogle Scholar |
Ting, S. C., and Hohmann, G. W., 1981, Integral equation modeling of three-dimensional magnetotelluric response: Geophysics 46, 182–197.
| Crossref | GoogleScholarGoogle Scholar |