Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Scandium(iii) Triflate as a Lewis Acid Catalyst of Oxime Ligation

Philip A. Cistrone A B , Anouk Dirksen A C , Sampat Ingale A D and Philip E. Dawson https://orcid.org/0000-0002-2538-603X A E
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Scripps Research, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA.

B 1859 Inc., 3125 Merryfield Row, San Diego, CA 92121, USA.

C Mersana Therapeutics Inc., 840 Memorial Drive, Cambridge, MA 02139, USA.

D Merck Exploratory Science Center, 320 Bent Street, Cambridge, MA 02141, USA.

E Corresponding author. Email: dawson@scripps.edu

Australian Journal of Chemistry 73(4) 377-379 https://doi.org/10.1071/CH20042
Submitted: 8 February 2020  Accepted: 11 March 2020   Published: 20 March 2020

Abstract

Imine-forming reactions are widely applicable in bioconjugation owing to their high chemoselectivity. The ligation of a ketone or aldehyde with an aminooxy functional group to form a physiologically stable oxime bond is often used to link complex and precious biomolecules. Although the reaction proceeds modestly in acidic solution, the abundance of protonated carbonyl species at pH 7 limits its utility in many biological applications. The use of nucleophilic aryl amines, such as aniline or a phenylenediamine, allows a high population of protonated Schiff base to undergo transimination to the oxime product. Although this method affords significant enhancements at low pH, reactions can still be sluggish at neutral pH, especially with ketones such as acetophenone that are commonly used in bioconjugation. Here, we employ scandium(iii) trifluromethanesulfonate (triflate) (Sc(OTf)3), a uniquely water-stable Lewis acid, as a co-catalyst with ortho-phenylenediamine in the oxime ligation to yield up to an order of magnitude rate enhancement over the catalysts when applied individually.


References

[1]  F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry: Part A: Structure and Mechanisms, 5th edn 2007 (Springer: Berlin).

[2]  S. Kobayashi, Eur. J. Org. Chem. 1999, 15.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  S. Kobayashi, I. Hachiya, J. Org. Chem. 1994, 59, 3590.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  S. Kobayashi, K. Manabe, Pure Appl. Chem. 2000, 72, 1373.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  G. A. Melson, D. J. Olszanski, A. K. Rahimi, Spectrochim. Acta A 1977, 33, 301.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  D. K. Kölmel, E. T. Kool, Chem. Rev. 2017, 117, 10358.
         | Crossref | GoogleScholarGoogle Scholar | 28640998PubMed |

[7]  W. P. Jencks, J. Am. Chem. Soc. 1959, 81, 475.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  E. H. Cordes, W. P. Jencks, J. Am. Chem. Soc. 1962, 84, 4319.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  E. H. Cordes, W. P. Jencks, J. Am. Chem. Soc. 1962, 84, 826.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  A. Dirksen, T. M. Hackeng, P. E. Dawson, Angew. Chem. Int. Ed. 2006, 45, 7581.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  A. Dirksen, S. Dirksen, T. M. Hackeng, P. E. Dawson, J. Am. Chem. Soc. 2006, 128, 15602.
         | Crossref | GoogleScholarGoogle Scholar | 17147365PubMed |

[12]  L. H. Yuen, N. S. Saxena, H. S. Park, K. Weinberg, E. T. Kool, ACS Chem. Biol. 2016, 11, 2312.
         | Crossref | GoogleScholarGoogle Scholar | 27326450PubMed |

[13]  M. Rashidian, M. M. Mahmoodi, R. Shah, J. K. Dozier, C. R. Wagner, M. D. Distefano, Bioconjug. Chem. 2013, 24, 333.
         | Crossref | GoogleScholarGoogle Scholar | 23425124PubMed |

[14]  M. M. Mahmoodi, M. Rashidian, Y. Zhang, M. D. Distefano, Curr. Protoc. Protein Sci. 2015, 79, 1541.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  M. Wendeler, L. Grinberg, X. Wang, P. E. Dawson, M. Baca, Bioconjug. Chem. 2014, 25, 93.
         | Crossref | GoogleScholarGoogle Scholar | 24320725PubMed |

[16]  P. Crisalli, E. T. Kool, J. Org. Chem. 2013, 78, 1184.
         | Crossref | GoogleScholarGoogle Scholar | 23289546PubMed |

[17]  L. Wang, A. Brock, B. Herberich, P. G. Schultz, Science 2001, 292, 498.
         | Crossref | GoogleScholarGoogle Scholar | 11313494PubMed |

[18]  J. Xie, P. G. Schultz, Curr. Opin. Chem. Biol. 2005, 9, 548.
         | Crossref | GoogleScholarGoogle Scholar | 16260173PubMed |

[19]  S. A. Kularatne, V. Deshmukh, J. Ma, V. Tardif, R. K. V. Lim, H. M. Pugh, Y. Sun, A. Manibusan, A. J. Sellers, R. S. Barnett, S. Srinagesh, J. S. Forsyth, W. Hassenpflug, F. Tian, T. Javahishvili, B. Felding-Habermann, B. R. Lawson, S. A. Kazane, P. G. Schultz, Angew. Chem. Int. Ed. 2014, 53, 11863.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  S. D. Tilley, N. S. Joshi, M. B. Francis, in Wiley Encyclopedia of Chemical Biology (Ed. T. P. Begley) 2008, pp. 593–634 (Wiley: Hoboken, NJ).

[21]  J. Ni, Y. Sohma, M. Kanai, Chem. Commun. 2017, 3311.
         | Crossref | GoogleScholarGoogle Scholar |