Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Supramolecular Interaction Between Cucurbit[8]uril and the Quinolone Antibiotic Ofloxacin

Chun-Rong Li A , Hua-Ming Feng B , Jin-Yi Zhao C , Zhu Li C E , Bing Bian D , Tie-Hong Meng A , Xian-Yun Hu A , Heng Wang A and Xin Xiao B E
+ Author Affiliations
- Author Affiliations

A Public Course Teaching Department, Qiannan Medical College for Nationalities, Duyun 558000, China.

B Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.

C College of Life Science, Guizhou University, Guiyang 550025, China.

D College of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 550025, China.

E Corresponding authors. Email: zhuliluck@163.com; gyhxxiaoxin@163.com

Australian Journal of Chemistry 72(12) 983-989 https://doi.org/10.1071/CH19341
Submitted: 22 July 2019  Accepted: 11 October 2019   Published: 20 November 2019

Abstract

The host–guest inclusion complex of cucurbit[8]uril (Q[8]) and ofloxacin (OFLX) has been prepared and characterised by means of 1H NMR spectroscopy, MALDI-TOF mass spectrometry, isothermal titration calorimetry (ITC), fluorescence spectroscopy, and UV-vis absorption spectroscopy. The findings demonstrated that a host–guest inclusion complex could be formed through an encapsulation of the methylmorpholine and piperazine rings in OFLX. ITC results indicated that the formation of this inclusion complex (1 : 1 molar ratio) was primarily dependent on enthalpy and entropy changes. In addition, the release of OFLX from the inclusion complex was increased under acidic conditions.


References

[1]  (a) K. Uekama, F. Hirayama, T. Irie, Chem. Rev. 1998, 98, 2045.
         | Crossref | GoogleScholarGoogle Scholar | 11848959PubMed |
      (b) J. Zhang, P. X. Ma, Adv. Drug Deliv. Rev. 2013, 65, 1215.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. V. Kurkov, T. Loftsson, Int. J. Pharm. 2013, 453, 167.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) A. Ikeda, S. Shinkai, Chem. Rev. 1997, 97, 1713.
         | Crossref | GoogleScholarGoogle Scholar | 11851464PubMed |
      (b) N. L. Strutt, H. C. Zhang, S. T. Schneebeli, J. F. Stoddart, Acc. Chem. Res. 2014, 47, 2631.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. Da Silva, A. N. Lazar, A. W. Coleman, J. Drug Deliv. Sci. Technol. 2004, 14, 3.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) G. W. Gokel, W. M. Leevy, M. E. Weber, Chem. Rev. 2004, 104, 2723.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. J. Webber, R. Langer, Chem. Soc. Rev. 2017, 46, 6600.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) S. J. Barrow, S. Kasera, M. J. Rowland, J. del Barrio, O. A. Scherman, Chem. Rev. 2015, 115, 12320.
         | Crossref | GoogleScholarGoogle Scholar | 26566008PubMed |
      (b) R. H. Gao, L. X. Chen, K. Chen, Z. Tao, X. Xiao, Coord. Chem. Rev. 2017, 348, 1.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. I. Assaf, W. M. Nau, Chem. Soc. Rev. 2015, 44, 394.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Kim, I. S. Jung, S. Y. Kim, E. Lee, J. K. Kang, S. Sakamoto, K. Yamaguchi, K. Kim, J. Am. Chem. Soc. 2000, 122, 540.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) L. Isaacs, Acc. Chem. Res. 2014, 47, 2052.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) G. Yu, K. Jie, F. Huang, Chem. Rev. 2015, 115, 7240.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) P. Wei, X. Yan, F. Huang, Chem. Soc. Rev. 2015, 44, 815.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) J. Liu, Y. Lan, Z. Yu, C. S. Y. Tan, R. M. Parker, C. Abell, O. A. Scherman, Acc. Chem. Res. 2017, 50, 208.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) M. Fu, W. Chen, X. Zhu, Q. Liu, J. Power Sources 2018, 396, 41.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) M. Liu, J. L. Kan, Y. Q. Yao, Y. Q. Zhang, B. Bian, Z. Tao, Q. J. Zhu, X. Xiao, Sens. Actuators B Chem. 2019, 283, 290.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) G. H. Aryal, K. W. Hunter, L. M. Huang, Org. Biomol. Chem. 2018, 16, 7425.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) Z. Z. Gao, J. L. Kan, Z. Tao, B. Bian, X. Xiao, New J. Chem. 2018, 42, 15420.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) H. Liu, Y. Ding, B. Yang, Z. Liu, Q. Liu, X. Zhang, Sens. Actuators B Chem. 2018, 271, 336.
         | Crossref | GoogleScholarGoogle Scholar |
      (n) Y. Ding, B. Yang, H. Liu, Z. Liu, X. Zhang, Q. Liu, Sens. Actuators B Chem. 2018, 259, 775.
         | Crossref | GoogleScholarGoogle Scholar |
      (o) X. X. Wang, K. Chen, F. F. Shen, Z. Y. Hua, S. C. Qiu, Y. Q. Zhang, H. Cong, Q. Y. Liu, Z. Tao, X. Xiao, Chem. – Eur. J. 2017, 23, 16953.
         | Crossref | GoogleScholarGoogle Scholar |
      (p) P. H. Shan, Z. R. Zhang, D. Bai, B. Bian, Z. Tao, X. Xiao, New J. Chem. 2019, 43, 407.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  V. D. Uzunova, C. Cullinane, K. Brix, W. M. Nau, A. I. Day, Org. Biomol. Chem. 2010, 8, 2037.
         | Crossref | GoogleScholarGoogle Scholar | 20401379PubMed |

[5]  S. Walker, R. Oun, F. J. McInnes, N. J. Wheate, Isr. J. Chem. 2011, 51, 616.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  N. J. Wheate, C. Limantoro, Supramol. Chem. 2016, 28, 849.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) K. I. Kuok, S. Li, I. W. Wyman, R. Wang, Ann. N. Y. Acad. Sci. 2017, 1398, 108.
         | Crossref | GoogleScholarGoogle Scholar | 28692768PubMed |
      (b) X. Yang, W. Zhao, Z. Wang, Y. Huang, S. M. Y. Lee, Z. Tao, R. Wang, Food Chem. Toxicol. 2017, 108, 510.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  L. Cao, G. Hettiarachchi, V. Briken, L. Isaacs, Angew. Chem. Int. Ed. 2013, 52, 12033.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  Y. Chen, Z. Huang, H. Zhao, J. F. Xu, Z. Sun, X. Zhang, ACS Appl. Mater. Interfaces 2017, 9, 8602.
         | Crossref | GoogleScholarGoogle Scholar | 28194936PubMed |

[10]  S. Li, H. Chen, X. Yang, D. Bardelang, I. W. Wyman, J. Wan, S. M. Y. Lee, R. Wang, ACS Med. Chem. Lett. 2015, 6, 1174.
         | Crossref | GoogleScholarGoogle Scholar | 26713100PubMed |

[11]  X. Miao, Y. Li, I. Wyman, S. M. Y. Lee, D. H. Macartney, Y. Zheng, R. Wang, MedChemComm 2015, 6, 1370.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  R. Wang, D. Bardelang, M. Waite, K. A. Udachin, D. M. Leek, K. Yu, C. I. Ratcliffe, J. A. Ripmeester, Org. Biomol. Chem. 2009, 7, 2435.
         | Crossref | GoogleScholarGoogle Scholar | 19462055PubMed |

[13]  F. J. McInnes, N. G. Anthony, A. R. Kennedy, N. J. Wheate, Org. Biomol. Chem. 2010, 8, 765.
         | Crossref | GoogleScholarGoogle Scholar | 20135032PubMed |

[14]  I. W. Wyman, D. H. Macartney, Org. Biomol. Chem. 2010, 8, 247.
         | Crossref | GoogleScholarGoogle Scholar | 20024155PubMed |

[15]  (a) N. J. Wheate, D. P. Buck, A. I. Day, J. G. Collins, Dalton Trans. 2006, 451.
         | Crossref | GoogleScholarGoogle Scholar | 16395444PubMed |
      (b) N. J. Wheate, J. Inorg. Biochem. 2008, 102, 2060.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Q. Huang, K. I. Kuok, X. Zhang, L. Yue, S. M. Y. Lee, J. Zhang, R. Wang, Nanoscale 2018, 10, 10333.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  N. J. Wheate, V. Vora, N. G. Anthony, F. J. McInnes, J. Incl. Phenom. Macrocycl. Chem. 2010, 68, 359.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  C. Yang, H. Z. Liu, X. F. Zhong, W. D. Lu, BMC Biotechnol. 2011, 11, 21.
         | Crossref | GoogleScholarGoogle Scholar | 21401960PubMed |

[18]  H. Chen, J. Y. W. Chan, S. Li, J. J. Liu, I. W. Wyman, S. M. Y. Lee, D. H. Macartney, R. Wang, RSC Adv. 2015, 5, 63745.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  R. Wang, D. H. Macartney, Org. Biomol. Chem. 2008, 6, 1955.
         | Crossref | GoogleScholarGoogle Scholar | 18480910PubMed |

[20]  R. Wang, B. C. MacGillivray, D. H. Macartney, Dalton Trans. 2009, 3584.
         | Crossref | GoogleScholarGoogle Scholar | 19381421PubMed |

[21]  H. S. El-Sheshtawy, S. Chatterjee, K. I. Assaf, M. N. Shinde, W. M. Nau, J. Mohanty, Sci. Rep. 2018, 8, 13925.
         | Crossref | GoogleScholarGoogle Scholar | 30224752PubMed |

[22]  (a) K. Mehla, J. Ramana, Microb. Drug Resist. 2018, 24, 232.
         | Crossref | GoogleScholarGoogle Scholar | 28759328PubMed |
         (b) D. S. Johnson, J. J. Li, in The Art of Drug Synthesis (Eds D. S. Johnson, J. J. Li) 2007, pp. 39–56 (Wiley: Hoboken, NJ).
      (c) E. P. Bernaz, Int. J. Pharm. Sci. Res. 2016, 7, 343.

[23]  (a) S. Emami, A. Foroumadi, N. Samadi, M. A. Faramarzi, S. Rajabalian, Arch. Pharm. Chem. Life Sci. 2009, 342, 405.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. Naeem, S. L. Badshah, M. Muska, N. Ahmad, K. Khan, Molecules 2016, 21, 268.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  F. V. Bright, T. L. Keimig, L. B. Mcgown, Anal. Chim. Acta 1985, 175, 189.
         | Crossref | GoogleScholarGoogle Scholar |