Hydration States of Cholinium Phosphate-Type Ionic Liquids as a Function of Water Content*
Yohsuke Nikawa A , Seiji Tsuzuki B , Hiroyuki Ohno A D and Kyoko Fujita C DA Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
B Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
C Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
D Corresponding authors. Email: ohnoh@cc.tuat.ac.jp; kyokof@toyaku.ac.jp
Australian Journal of Chemistry 72(5) 392-399 https://doi.org/10.1071/CH18381
Submitted: 1 August 2018 Accepted: 5 February 2019 Published: 28 February 2019
Abstract
We investigated the hydration states of cholinium phosphate-type ionic liquids (ILs) in relation to ion structure, focusing on the influence of the hydroxyl group of the cation and the alkyl chain length of the anion. Water activity measurements provided information on the macroscopic hydration states of the hydrated ILs, while NMR measurements and molecular dynamics simulations clearly showed the microscopic interactions and coordination of the water molecules. The hydrogen bonding networks in these ILs were influenced by the anion structure and water content, and the mobility of water molecules was influenced by the number of hydroxyl groups in the cation and anion.
References
[1] M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 2009, 8, 621.| Crossref | GoogleScholarGoogle Scholar | 19629083PubMed |
[2] K. Fujita, K. Murata, M. Masuda, N. Nakamura, H. Ohno, RSC Adv. 2012, 2, 4018.
| Crossref | GoogleScholarGoogle Scholar |
[3] U. Kragl, M. Eckstein, N. Kaftzik, Curr. Opin. Biotechnol. 2002, 13, 565.
| Crossref | GoogleScholarGoogle Scholar | 12482515PubMed |
[4] R. Vijayaraghavan, A. Izgorodin, V. Ganesh, M. Surianarayanan, D. R. MacFarlane, Angew. Chem. Int. Ed. 2010, 49, 1631.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. Bisht, P. Venkatesu, New J. Chem. 2017, 41, 13902.
| Crossref | GoogleScholarGoogle Scholar |
[6] K. Fujita, D. R. MacFarlane, M. Forsyth, Chem. Commun. 2005, 4804.
| Crossref | GoogleScholarGoogle Scholar |
[7] K. Fujita, H. Ohno, Biopolymers 2010, 93, 1093.
| Crossref | GoogleScholarGoogle Scholar | 20665687PubMed |
[8] K. Fujita, H. Ohno, Chem. Commun. 2012, 5751.
| Crossref | GoogleScholarGoogle Scholar |
[9] K. Fujita, D. R. MacFarlane, M. Forsyth, M. Yoshizawa-Fujita, K. Murata, N. Nakamura, H. Ohno, Biomacromolecules 2007, 8, 2080.
| Crossref | GoogleScholarGoogle Scholar | 17580947PubMed |
[10] F. Hofmeister, Arch. Exp. Pathol. Pharmacol. 1888, 24, 247.
| Crossref | GoogleScholarGoogle Scholar |
[11] D. Constantinescu, H. Weingärtner, C. Herrmann, Angew. Chem. Int. Ed. 2007, 46, 8887.
| Crossref | GoogleScholarGoogle Scholar |
[12] H. Zhao, J. Chem. Technol. Biotechnol. 2010, 85, 891.
| Crossref | GoogleScholarGoogle Scholar |
[13] Z. Yang, J. Biotechnol. 2009, 144, 12.
| Crossref | GoogleScholarGoogle Scholar | 19409939PubMed |
[14] H. Zhao, J. Mol. Catal., B Enzym. 2005, 37, 16.
| Crossref | GoogleScholarGoogle Scholar |
[15] H. Zhao, Z. Song, J. Chem. Technol. Biotechnol. 2007, 82, 304.
| Crossref | GoogleScholarGoogle Scholar |
[16] C. Klein, C. R. Iacovella, C. McCabe, P. T. Cummings, Soft Matter 2015, 11, 3340.
| Crossref | GoogleScholarGoogle Scholar | 25790338PubMed |
[17] R. Nagumo, K. Akamatsu, R. Miura, A. Suzuki, N. Hatakeyama, H. Takaba, A. Miyamoto, Polym. J. 2012, 44, 1149.
| Crossref | GoogleScholarGoogle Scholar |
[18] F. Foglia, M. J. Lawrence, C. D. Lorenz, S. E. McLain, J. Chem. Phys. 2010, 133, 145103.
| Crossref | GoogleScholarGoogle Scholar | 20950050PubMed |
[19] Y. Nikawa, K. Fujita, H. Ohno, Phys. Chem. Chem. Phys. 2017, 19, 8148.
| Crossref | GoogleScholarGoogle Scholar | 28286890PubMed |
[20] K. Fujita, Y. Nikawa, H. Ohno, Chem. Commun. 2013, 3257.
| Crossref | GoogleScholarGoogle Scholar |
[21] H. Kitano, S. Tada, T. Mori, K. Takaha, M. Gemmei-Ide, M. Tanaka, M. Fukuda, Y. Yokoyama, Langmuir 2005, 21, 11932.
| Crossref | GoogleScholarGoogle Scholar | 16316135PubMed |
[22] M. Tanaka, A. Mochizuki, J. Biomed. Mater. Res. A 2004, 68A, 684.
| Crossref | GoogleScholarGoogle Scholar |
[23] S. Morita, M. Tanaka, Y. Ozaki, Langmuir 2007, 23, 3750.
| Crossref | GoogleScholarGoogle Scholar | 17335251PubMed |
[24] Y. Nikawa, K. Fujita, K. Noguchi, H. Ohno, Acta Crystallogr. 2014, E70, o549.
[25] G. Roudaut, F. Debeaufort, in Chemical Deterioration and Physical Instability of Food and Beverages (Eds L. H. Skibsted, J. Risbo, M. L. Andersen) 2010, pp. 141–180 (CRC Press: Oxford).
[26] K. Fumino, A. Wulf, R. Ludwig, Phys. Chem. Chem. Phys. 2009, 11, 8790.
| Crossref | GoogleScholarGoogle Scholar | 20449024PubMed |
[27] L. Crowhurst, P. R. Mawdsley, J. M. Perez-Arlandis, P. A. Salter, T. Welton, Phys. Chem. Chem. Phys. 2003, 5, 2790.
| Crossref | GoogleScholarGoogle Scholar |
[28] H. Weingärtner, Angew. Chem. Int. Ed. 2008, 47, 654.
| Crossref | GoogleScholarGoogle Scholar |
[29] I. Khan, K. A. Kurnia, F. Mutelet, S. P. Pinho, J. A. P. Coutinho, J. Phys. Chem. B 2014, 118, 1848.
| Crossref | GoogleScholarGoogle Scholar | 24467614PubMed |
[30] I. Khan, K. A. Kurnia, T. E. Sintra, J. A. Saraiva, S. P. Pinho, J. A. P. Coutinho, Fluid Phase Equilib. 2014, 361, 16.
| Crossref | GoogleScholarGoogle Scholar |
[31] R. Kuzniecky, G. Jackson, Magnetic Resonance in Epilepsy (2nd edn) 2005 (Academic Press: New York, NY).
[32] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision C.01 2009 (Gaussian, Inc.: Wallingford, CT).
[33] C. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618.
| Crossref | GoogleScholarGoogle Scholar |
[34] M. Head-Gordon, J. A. Pople, M. J. Frisch, Chem. Phys. Lett. 1988, 153, 503.
| Crossref | GoogleScholarGoogle Scholar |
[35] U. C. Singh, P. A. Kollman, J. Comput. Chem. 1984, 5, 129.
| Crossref | GoogleScholarGoogle Scholar |
[36] B. H. Besler, K. M. Merz, P. A. Kollman, J. Comput. Chem. 1990, 11, 431.
| Crossref | GoogleScholarGoogle Scholar |
[37] B. J. Ransil, J. Chem. Phys. 1961, 34, 2109.
| Crossref | GoogleScholarGoogle Scholar |
[38] S. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
| Crossref | GoogleScholarGoogle Scholar |
[39] S. Tsuzuki, W. Shinoda, S. Seki, Y. Umebayashi, K. Yoshida, K. Dokko, M. Watanabe, ChemPhysChem 2013, 14, 1993.
| Crossref | GoogleScholarGoogle Scholar | 23595866PubMed |
[40] W. Shinoda, M. Mikami, J. Comput. Chem. 2003, 24, 920.
| Crossref | GoogleScholarGoogle Scholar | 12720312PubMed |
[41] W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 1996, 118, 11225.
| Crossref | GoogleScholarGoogle Scholar |
[42] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, J. Chem. Phys. 1983, 79, 926.
| Crossref | GoogleScholarGoogle Scholar |
[43] M. Lever, J. W. Blunt, R. G. A. R. Maclagan, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 2001, 130, 471.
| Crossref | GoogleScholarGoogle Scholar |