Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Water-Soluble Perylene Diimide for Highly Sensitive and Repeatable Metal Ion Detection with Novel Logic Gate Operation

Wenxia Liu A , Zhiguang Suo B , Yihao Liu B , Lingyan Feng https://orcid.org/0000-0001-9817-8680 B C , Binbin Zhang A , Feifei Xing A C and Shourong Zhu A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.

B Materials Genome Institute, Shanghai University, Shanghai 200444, China.

C Corresponding authors. Email: lingyanfeng@t.shu.edu.cn; xff@i.shu.edu.cn

Australian Journal of Chemistry 72(3) 206-212 https://doi.org/10.1071/CH18310
Submitted: 29 June 2018  Accepted: 15 November 2018   Published: 14 December 2018

Abstract

In this paper, we report a synthesised water soluble perylene derivative, N,N′-di(2-aspartic acid)-perylene-3,4,9,10-tetracarboxylic diimide (PASP), for highly sensitive and repeatable detection of copper (Cu2+) and aluminium ions (Al3+) and novel logic gate operation. In the presence of metal ions, a dramatic decrease in PASP optical intensity was induced based on the strong interaction between terminal carboxy groups and the metal ions. Detection limits of 0.22 and 0.24 μM were respectively obtained at physiological pH. The signals could be recovered upon the addition of ethylenediaminetetraacetate (EDTA) and P2O74−, which competed for Cu2+ and Al3+ in the PASP-CuII and PASP-AlIII systems and induced their dissociation as secondary sensors for anions. At least four detection cycles were performed with a high recovery efficiency. Based on these phenomena, a novel three-level logic gate (OR-IMP-OR) was performed for smart signal readout with metal ions (Cu2+ and Al3+) and anions (EDTA and P2O74−) as input signals, and the relative change of optical intensity of PASP as output signal. Furthermore, the prepared PASP molecule also responded sensitively to Cu2+ and Al3+ in 10 % diluted serum medium.


References

[1]  X. Chen, M. J. Jou, J. Yoon, Org. Lett. 2009, 11, 2181.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  B. Wang, C. Yu, Angew. Chem. 2010, 49, 1485.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  X. Feng, Y. An, Z. Yao, C. Li, G. Shi, ACS Appl. Mater. Interfaces 2012, 4, 614.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  M. Pandeeswar, H. Khare, S. Ramakumar, T. Govindaraju, RSC Adv. 2014, 4, 20154.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  Y. Shibano, T. Umeyama, Y. Matano, H. Imahori, Org. Lett. 2007, 9, 1971.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  N. Kolhe, S. Asha, S. Senanayak, K. Narayan, J. Phys. Chem. B 2010, 114, 16694.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  X. Zhan, Z. Tan, B. Domercq, Z. An, X. Zhang, S. Barlow, Y. Li, D. Zhu, B. Kippelen, S. Marder, J. Am. Chem. Soc. 2007, 129, 7246.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  T. Dienel, C. Bauer, I. Dolamic, Sol. Energy 2010, 84, 1366.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  B. Muthuraj, S. R. Chowdhury, S. Mukherjee, C. R. Patra, P. K. Iyer, RSC Adv. 2015, 5, 28211.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  D. K. Maiti, S. Roy, A. Datta, A. Banerjee, Chem. Phys. Lett. 2013, 588, 76.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  P. K. Sukul, D. C. Santra, P. K. Singh, S. K. Maji, S. Malik, New J. Chem. 2015, 39, 5084.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  S. G. Kaler, Nat. Rev. Neurol. 2011, 7, 15.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  I. Bertini, A. Rosato, Cell. Mol. Life Sci. 2008, 65, 89.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  T. Finkel, M. Serrano, M. A. Blasco, Nature 2007, 448, 767.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  Q. Zou, X. Li, J. Zhang, J. Zhou, B. Sun, H. Tian, Chem. Commun. 2012, 48, 2095.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  Z. Q. Guo, W. Q. Chen, X. M. Duan, Org. Lett. 2010, 12, 2202.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  S. Dalapati, S. Jana, M. A. Alam, N. Guchhait, Sens. Actuators B 2011, 160, 1106.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  N. Shao, G. X. Pang, X. R. Wang, R. J. Wu, Y. Cheng, Tetrahedron 2010, 66, 7302.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  D. G. Barceloux, Clin. Toxicol. 1999, 37, 217.

[20]  D. Strausak, J. F. Mercer, H. Dieter, W. Stremmel, G. Multhaup, Brain Res. Bull. 2001, 55, 175.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  E. Gaggelli, H. Kozlowski, D. Valensin, G. Valensin, Chem. Rev. 2006, 106, 1995.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  J. S. Valentine, P. J. Hart, Proc. Natl. Acad. Sci. USA 2003, 100, 3617.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  J. Emerit, M. Edeas, F. Bricaire, Biomed. Pharmacother. 2004, 58, 39.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  S. Kim, J. Y. Noh, K. Y. Kim, J. H. Kim, H. K. Kang, S. W. Nam, S. H. Kim, S. Park, C. Kim, J. Kim, Inorg. Chem. 2012, 51, 3597.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  D. P. Perl, A. R. Brody, Science 1980, 208, 297.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  E. Delhaize, P. R. Ryan, Plant Physiol. 1995, 107, 315.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  B. K. Jena, C. R. Raj, Anal. Chem. 2008, 80, 4836.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  A. Mohadesi, M. A. Taher, F. Majidi, Anal. Chem. 2011, 66, 207.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  P. Zhang, S. Dong, G. Gu, T. Huang, Bull. Korean Chem. Soc. 2010, 31, 2949.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  S. Yilmaz, B. Öztürk, D. Özdemir, A. E. Eroǧlu, F. N. Ertaş, Turk. J. Chem. 2013, 37, 316.

[31]  M. Koneswaran, R. Narayanaswamy, Sens. Actuators B 2009, 139, 104.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  W. Chen, X. Tu, X. Guo, Chem. Commun. 2009, 13, 1736.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  S. Malkondu, Tetrahedron 2014, 70, 5580.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  Y. F. Long, C. Z. Huang, R. X. He, Y. F. Li, Anal. Chim. Acta 2008, 624, 128.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  W. Yang, J. J. Gooding, Z. He, Q. Li, G. Chen, J. Nanosci. Nanotechnol. 2007, 7, 712.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  S. S. Babkina, N. A. Ulakhovich, Anal. Chem. 2005, 77, 5678.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  M. Zhou, J. Wang, Electroanalysis 2012, 24, 197.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  M. Zhou, S. Dong, Acc. Chem. Res. 2011, 44, 1232.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  S. Ozlem, E. U. Akkaya, J. Am. Chem. Soc. 2009, 131, 48.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  M. Zhang, Z. B. Qu, H. Y. Ma, T. S. Zhou, G. Y. Shi, Chem. Commun. 2014, 50, 4677.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  M. N. Stojanovic, T. E. Mitchell, D. Stefanovic, J. Am. Chem. Soc. 2002, 124, 3555.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  L. Y. Feng, Z. Z. Lyu, A. Offenhäusser, D. Mayer, Angew. Chem. Int. Ed. 2015, 54, 7693.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  J. Andreasson, U. Pischel, Chem. Soc. Rev. 2015, 44, 1053.

[44]  J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, R. S. Williams, Nature 2010, 464, 873.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  L. N. Zhong, F. F. Xing, Y. L. Bai, Y. M. Zhao, S. R. Zhu, Spectrochim. Acta A 2013, 115, 370.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  E. Kozma, G. Grisci, W. Mróz, M. Catellani, A. E. Andicsova, K. Pagano, F. Galeotti, Dyes Pigments 2016, 125, 201.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  Y. Li, L. Zhu, L. Cheng, C. Liu, W. Liu, Y. Fan, X. Li, X. Fan, Surf. Interface Anal. 2016, 48, 1002.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  P. K. Sukul, P. K. Singh, S. K. Maji, S. Malik, J. Mater. Chem. B 2013, 1, 153.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  Y. Lin, R. Chapman, M. M. Stevens, Anal. Chem. 2014, 86, 6410.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  C. Backes, C. D. Schmidt, K. Rosenlehner, F. Hauke, J. N. Coleman, A. Hirsch, Adv. Mater. 2010, 22, 788.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  L. Yan, L. Yang, J. Lan, J. You, Sci. China Chem. 2009, 52, 518.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  B. Wang, C. Yu, Angew. Chem. Int. Ed. 2010, 49, 1485.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  V. Iyengar, J. Woittiez, Clin. Chem. 1988, 34, 474.

[54]  D. Krewski, R. A. Yokel, E. Nieboer, D. Borchelt, J. Cohen, J. Harry, S. Kacew, J. Lindsay, A. M. Mahfouz, V. Rondeau, J. Toxicol. Environ. Health, Part B 2007, 10, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  B. Li, Y. Dong, M. Li, Z. Ding, J. Mater. Sci. 2014, 49, 7639.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  P. K. Sukul, D. C. Santra, P. K. Singh, S. K. Maji, S. Malik, New J. Chem. 2015, 39, 5084.

[57]  A. Rai, A. K. Singh, K. Tripathi, A. K. Sonkar, B. S. Chauhan, S. Srikrishna, T. D. James, L. Mishra, Sens. Actuators B 2018, 266, 95.
         | Crossref | GoogleScholarGoogle Scholar |