Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Structure and Bonding in Hexa-tert-butyl-hexa-peri-hexabenzocoronene Sandwich Complexes of Ruthenium*

Matthias Lein
+ Author Affiliations
- Author Affiliations

School of Chemical and Physical Sciences (SCPS), Victoria University of Wellington, Kelburn, Wellington 6012, New Zealand, and Centre for Theoretical Chemistry and Physics (CTCP), New Zealand Institute for Advanced Study, Massey University, Palmerston North, Auckland 4442, New Zealand. Email: matthias.lein@vuw.ac.nz

Australian Journal of Chemistry 71(4) 222-226 https://doi.org/10.1071/CH17566
Submitted: 31 October 2017  Accepted: 13 December 2017   Published: 9 January 2018

Abstract

We evaluate the balance of steric and electronic effects in the site selectivity of the binding of [Rh(Me5Cp)]+ ([RhCp·]+) to the three possible coordination sites of the polyaromatic hydrocarbon (PAH) hexa-tert-butyl-hexa-peri-hexabenzocoronene (HBBC). We find that despite the close proximity of sterically demanding tert-butyl groups to the methyl groups of the Cp* ligand, the extent of steric repulsion is minor compared to electronic interaction from bond formation and that the site selectivity is best explained in terms of the electronics of the (poly) aromatic system. This is in contrast to previous investigations on similar systems with a COD ligand where steric influence has been shown to dominate selectivity.


References

[1]  (a) R. Kleingeld, J. Wang, M. Lein, Polyhedron 2016, 114, 110.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFGjs73J&md5=45f6643e420392dc9e91732246fdfad4CAS |
      (b) I. Welsh, M. Lein, J. Comput. Chem. 2014, 35, 181.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) S. Sergeyev, W. Pisula, Y. H. Geerts, Chem. Soc. Rev. 2007, 36, 1902.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1GhtbzJ&md5=c5cae36bf0472c85963027c52e676465CAS |
      (b) S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Haegele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, M. Tosoni, Angew. Chem. Int. Ed. 2007, 46, 4832.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Fechtenkötter, N. Tchebotareva, M. Watson, K. Müllen, Tetrahedron 2001, 57, 3769.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  M. Al-Hussein, H. Hesse, J. Weickert, L. Dössel, X. Feng, K. Müllen, L. Schmidt-Mende, Thin Solid Films 2011, 520, 307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlaju7%2FE&md5=08a617f757db06520c3233bccbe1aad1CAS |

[4]  L. Zhi, K. Mullen, J. Mater. Chem. 2008, 18, 1472.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvVentr4%3D&md5=1c49004167583425ebb8425385715e09CAS |

[5]  (a) B. El Hamaoui, F. Laquai, S. Baluschev, J. Wu, K. A. Müllen, Synth. Met. 2006, 156, 1182.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) K.-Y. Kim, S. Liu, M. E. Köse, K. S. Schanze, Inorg. Chem. 2006, 45, 2509.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Wu, B. El Hamaoui, J. Li, L. Zhi, U. Kolb, K. Müllen, Small 2005, 1, 210.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) P. T. Herwig, V. Enkelmann, O. Schmelz, K. Müllen, Chemistry 2000, 6, 1834.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) B. El Hamaoui, L. Zhi, J. Wu, J. Li, N. T. Lucas, Z. Tomovic, U. Kolb, K. Müllen, Adv. Funct. Mater. 2007, 17, 1179.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  N. T. Lucas, H. M. Zareie, A. M. McDonagh, ACS Nano 2007, 1, 348.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKgtr3J&md5=745af1c8ac2f35a1a2d226f2725dd442CAS |

[7]  B. R. Hoggard, C. B. Larsen, N. T. Lucas, Organometallics 2014, 33, 6200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslahsLjO&md5=5f398648c8f39d79187eeabcba54d444CAS |

[8]  A. Woolf, M. M. Alibadi, A. B. Chaplin, J. E. McGrady, A. S. Weller, Eur. J. Inorg. Chem. 2011, 1626.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFOktbk%3D&md5=9bf25e7d96928c98456954e57837eddeCAS |

[9]  A. Woolf, A. B. Chaplin, J. E. McGrady, M. M. Alibadi, N. Rees, S. Draper, F. Murphy, A. S. Weller, Eur. J. Inorg. Chem. 2011, 1614.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFOkur0%3D&md5=a4528ac3a0d86d471b81fb3851037dacCAS |

[10]  S. P. Nolan, K. L. Martin, E. D. Stevens, P. J. Fagan, Organometallics 1992, 11, 3947.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsFWms7g%3D&md5=82af1c198bedb99701bad14b7e9f2d70CAS |

[11]  M. Rioja, P. Hamon, T. Roisnel, S. Sinbandhit, M. Fuentealba, K. Letelier, J.-Y. Saillard, A. Vega, J.-R. Hamon, Dalton Trans. 2015, 44, 316.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsl2gsLrL&md5=6b9c600a459f234e06c720f1107f93aeCAS |

[12]  (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=209e9cc4a137287cdf7908911350261bCAS |
      (b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFWgu7o%3D&md5=3e393bfa4913c49e3b85ab366bfbc9a2CAS |

[14]  D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkt12ntLo%3D&md5=ce44e44831ac37b039e7eef3a5f47924CAS |

[15]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 Revision D.01 2009 (Gaussian Inc.: Wallingford, CT).

[16]  F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFGls7s%3D&md5=34fd77ce2353f2ac48a33f9ed3386037CAS |

[17]  (a) B. I. Dunlap, J. W. D. Connolly, J. R. Sabin, J. Chem. Phys. 1979, 71, 3396.
         | 1:CAS:528:DyaE1MXlvF2hs7k%3D&md5=6b86b5afd7b1558b3f991516ccadd179CAS |
      (b) O. Vahtras, J. Almlöf, M. W. Feyereisen, Chem. Phys. Lett. 1993, 213, 514.
      (c) F. Neese, J. Comp. Chem. 2003, 24, 1740.

[18]  (a) R. Izsak, F. Neese, J. Chem. Phys. 2011, 135, 144105.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S. Kossmann, F. Neese, J. Chem. Theory Comput. 2010, 6, 2325.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 2009, 356, 98.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) A. D. Becke, Phys. Rev. A 1988, 38, 3098.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOhsLo%3D&md5=a45719d40c360e5370a331599e362bd1CAS |
      (b) J. P. Perdew, Phys. Rev. B 1986, 33, 8822.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) K. Kitaura, K. Morokuma, Int. J. Quantum Chem. 1976, 10, 325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xhs12rtbs%3D&md5=8ef2aa8e2b729a5a2937dbcddf9b4ca4CAS |
      (b) T. Ziegler, A. Rauk, Inorg. Chem. 1979, 18, 1558.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. Ziegler, A. Rauk, Inorg. Chem. 1979, 18, 1755.
         | Crossref | GoogleScholarGoogle Scholar |
         (d) F. M. Bickelhaupt, E. J. Baerends, in Reviews in Computational Chemistry (Eds K. B. Lipkowitz, D. B. Boyd) 2000, Vol. 15, pp. 1–86 (Wiley: New York, NY).

[21]  M. v. Hopffgarten, G. Frenking, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 43.

[22]  (a) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlGntrw%3D&md5=3d8197cf422a920126d9ee7a6973bb4dCAS |
      (b) C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, Theor. Chem. Acc. 1998, 99, 391.
         (c) E. Baerends, et al., ADF2014 2014 (SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam). Available at: http://www.scm.com/.

[23]  E. Van Lenthe, E. J. Baerends, J. Comput. Chem. 2003, 24, 1142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1CrsbY%3D&md5=7308a16689ec68a64a6c871c99a29897CAS |

[24]  E. Van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99, 4597.
         | 1:CAS:528:DyaK3sXmsl2jt7o%3D&md5=0889b94a20c4045c2f22bc3958c02a57CAS |

[25]  E. Van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1994, 101, 9783.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisFChu7g%3D&md5=a3108326983ac81bacc773d4f1117a42CAS |

[26]  M. Guell, J. Poater, J. M. Luis, O. Mo, M. Yanez, M. Sola, ChemPhysChem 2005, 6, 2552.
         | 1:CAS:528:DC%2BD2MXhtleqtL7O&md5=669540c1bb0cf9a73bb7e984747890f4CAS |