Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Ligand Constraints and Synthesis of Metal–Organic Polyhedra

Harsh Vardhan A B and Francis Verpoort A B C D E
+ Author Affiliations
- Author Affiliations

A Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Center for Chemical and Material Engineering, Wuhan University of Technology, Wuhan, China.

B School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.

C National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russian Federation.

D Ghent University, Global Campus Songdo, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, Korea.

E Corresponding author. Email: francis@whut.edu.cn; francis.verpoort@ugent.be




Francis Verpoort (1963, Belgium) received his DPhil from Ghent University in 1996. In 1998, he became a full professor at the same university. In 2004, he founded a spin-off company of Ghent University based on (latent) ruthenium olefin metathesis catalysts. In 2008, he became an Editor of Applied Organometallic Chemistry. Currently, as well as a Full Professor at Ghent University, he is a chair professor at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology), and the Director of the Center for Chemical and Material Engineering (Wuhan University of Technology). Recently, he has been appointed as an ‘Expert of the State’ in the frame of the ‘Thousand Talents’ program, China. His main research interests concern the structure and mechanisms of organometallic material chemistry, homogeneous and heterogeneous catalysts, MOFs and MOPs, water splitting, olefin metathesis and its applications, CO2 conversion, inorganic and organic polymers.



Harsh Vardhan (1989, India) received his Bachelor degree in Chemistry from the University of Delhi, India. In 2013, he obtained his master's degree from the Indian Institute of Technology Kharagpur, India. He is currently a PhD student under the supervision of Prof. Francis Verpoort from the Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, China. His current research interests are focussed on the design, synthesis and application of metal-organic polyhedra (MOPs).

Australian Journal of Chemistry 68(5) 707-730 https://doi.org/10.1071/CH14484
Submitted: 1 August 2014  Accepted: 16 January 2015   Published: 11 May 2015

Abstract

Metal–organic polyhedra are three dimensional discrete structures typically constructed by the self-assembly of metal ions and ligands. The synthesis and geometry of discrete structures entirely rely on the choice of metal ions, ligand constraints such as steric bulk, bend angle, and functionalities, and the nature of applied solvents. As a result, they provide tailorable internal volume and usually hydrophobic nature to the cavity that in turn makes them one of the prominent host molecules for a range of applications. This review highlights the intervention of ligand constraints, precisely bend angle (0°, 60°, 120°, and 180°), hydroxyl functionalities, and the role of concepts such as molecular panelling and subcomponent self-assembly in the synthesis of polyhedra.


References

[1]  G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFSls78%3D&md5=d3964ede66a9e6c6cdd1bc36f84c06d7CAS | 11923529PubMed |

[2]  C. J. Pedersen, Angew. Chem., Int. Ed. Engl. 1988, 27, 1021.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  J. M. Lehn, Angew. Chem., Int. Ed. Engl. 1988, 27, 89.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  D. J. Cram, Angew. Chem., Int. Ed. Engl. 1988, 27, 1009.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) P. M. Proulx-Curry, N. D. Chasteen, Coord. Chem. Rev. 1995, 144, 347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslGqsrk%3D&md5=1f93091394c77a32429cafcbb5a5f06aCAS |
      (b) P. M. Harrison, P. Arosio, Biochim. Biophys. Acta, Bioenerg. 1996, 1275, 161.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  R. W. Saalfrank, A. Stark, K. Peters, H. G. von Schnering, Angew. Chem., Int. Ed. Engl. 1988, 27, 851.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  R. W. Saalfrank, A. Stark, M. Bremer, H. U. Hummel, Angew. Chem., Int. Ed. Engl. 1990, 29, 311.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  R. W. Saalfrank, R. Burak, A. Breit, D. Stalke, R. Herbst‐Irmer, J. Daub, M. Porsch, E. Bill, M. Müther, A. X. Trautwein, Angew. Chem., Int. Ed. Engl. 1994, 33, 1621.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  R. W. Saalfrank, B. Hörner, D. Stalke, J. Salbeck, Angew. Chem., Int. Ed. Engl. 1993, 32, 1179.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives 1995 (Wiley-VCH: Weinheim).

[11]  C. Dietrich-Buchecker, J.-P. Sauvage, Molecular Catenanes, Rotaxanes and Knots: A Journey Through the World of Molecular Topology 1999 (Wiley-VCH: Weinheim).

[12]  (a) R. W. Saalfrank, H. Maid, A. Scheurer, Angew. Chem., Int. Ed. 2008, 47, 8794.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCgtLbN&md5=527eb2c300f0c6453892c510cc238e48CAS |
         (b) R. W. Saalfrank, A. Scheurer, in Chemistry of Nanocontainers, (Eds M. Albrecht, F. E. Hahn) 2012, Vol. 319, pp. 125–170 (Springer-Verlag: Berlin).

[13]  P. Stricklen, J. Verkade, J. Am. Chem. Soc. 1983, 105, 2494.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhs1Srurw%3D&md5=5a937c32eeb3b99ccd7af26f6c40a3f3CAS |

[14]  (a) B. H. Northrop, D. Chercka, P. J. Stang, Tetrahedron 2008, 64, 11495.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOht7zK&md5=c53313d320b0d1fe1c901cf7f54d9631CAS | 20011029PubMed |
      (b) S. R. Seidel, P. J. Stang, Acc. Chem. Res. 2002, 35, 972.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Leininger, B. Olenyuk, P. J. Stang, Chem. Rev. 2000, 100, 853.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) T. R. Cook, Y.-R. Zheng, P. J. Stang, Chem. Rev. 2013, 113, 734.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) P. J. Stang, J. Org. Chem. 2009, 74, 2.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) D. Caulder, K. Raymond, J. Chem. Soc., Dalton Trans. 1999, 1185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1ylsbs%3D&md5=062866a76e1697829199ca7c2dfc29ddCAS |
      (b) D. L. Caulder, K. N. Raymond, Acc. Chem. Res. 1999, 32, 975.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) K. Harris, D. Fujita, M. Fujita, Chem. Commun. 2013, 49, 6703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVCqtbfF&md5=0ea0c731ebeef78dcd8893b2ef0baceeCAS |
      (b) M. Fujita, M. Tominaga, A. Hori, B. Therrin, Acc. Chem. Res. 2005, 38, 369.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  (a) F. A. Cotton, C. Lin, C. A. Murillo, Acc. Chem. Res. 2001, 34, 759.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFCrsLc%3D&md5=3c9a4cb055a770c05cbad43ffde644b7CAS | 11601960PubMed |
      (b) F. A. Cotton, C. Lin, C. A. Murillo, Proc. Natl. Acad. Sci. USA 2002, 99, 4810.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  (a) N. C. Gianneschi, M. S. Masar, C. A. Mirkin, Acc. Chem. Res. 2005, 38, 825.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWhtrvK&md5=deccfa41fee8804764ea022db00bf2e3CAS | 16285706PubMed |
      (b) C. G. Oliveri, P. A. Ulmann, M. J. Wiester, C. A. Mirkin, Acc. Chem. Res. 2008, 41, 1618.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  J. Yang, J.-F. Ma, S. R. Batten, Chem. Commun. 2012, 48, 7899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVegtLfE&md5=b85b020c9d3adac0785db6d514b00524CAS |

[20]  (a) S. De, K. Mahata, M. Schmittel, Chem. Soc. Rev. 2010, 39, 1555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFKgt7w%3D&md5=12d64422fcd3ad9f97f000542be2b574CAS | 20419210PubMed |
      (b) M. M. Safont-Sempere, G. Fernández, F. Wurthner, Chem. Rev. 2011, 111, 5784.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) N. Ahmad, A. H. Chughtai, H. A. Younus, F. Verpoort, Coord. Chem. Rev. 2014, 280, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtleis7bJ&md5=adfe0fdacf8772b12609d1927277a3eaCAS |
      (b) N. Ahmad, H. A. Younus, A. H. Chughtai, F. Verpoort, Chem. Soc. Rev. 2015, 44, 9.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. D. Ward, P. R. Raithby, Chem. Soc. Rev. 2013, 42, 1619.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  D. J. Tranchemontagne, Z. Ni, M. O’Keeffe, O. M. Yaghi, Angew. Chem., Int. Ed. 2008, 47, 5136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos1Gkurs%3D&md5=65722ab8e7a9fe6485abc9182bdf9b1cCAS |

[23]  N. J. Young, B. P. Hay, Chem. Commun. 2013, 49, 1354.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGnsbg%3D&md5=24bb96e24702ade23bcc48daed56f953CAS |

[24]  X. Zhu, C. He, D. Dong, Y. Liu, C. Duan, Dalton Trans. 2010, 39, 10051.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSmsr3L&md5=1879bd1f2cff3ff72134f52ce881e3e1CAS | 20922225PubMed |

[25]  M. Fujita, S. Y. Yu, T. Kusukawa, H. Funaki, K. Ogura, K. Yamaguchi, Angew. Chem., Int. Ed. 1998, 37, 2082.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls12lur4%3D&md5=8dc0e6bd1d7cc7c23f81083bf687db8bCAS |

[26]  M. Aoyagi, K. Biradha, M. Fujita, J. Am. Chem. Soc. 1999, 121, 7457.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslChur4%3D&md5=d0c36817e5b5d5a3d20ab8cd1afef655CAS |

[27]  Y. Yamanoi, Y. Sakamoto, T. Kusukawa, M. Fujita, S. Sakamoto, K. Yamaguchi, J. Am. Chem. Soc. 2001, 123, 980.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvFCguw%3D%3D&md5=adfe8ec7b30f423b22089e3a795d677eCAS | 11456635PubMed |

[28]  C. He, Z. Lin, Z. He, C. Duan, C. Xu, Z. Wang, C. Yan, Angew. Chem., Int. Ed. 2008, 120, 891.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  M. J. Prakash, M. Oh, X. Liu, K. N. Han, G. H. Seong, M. S. Lah, Chem. Commun. 2010, 46, 2049.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  J.-R. Li, A. A. Yakovenko, W. Lu, D. J. Timmons, W. Zhuang, D. Yuan, H.-C. Zhou, J. Am. Chem. Soc. 2010, 132, 17599.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVeru7rO&md5=7f9993cbba100e49046ba5a74f4ecd54CAS | 21082847PubMed |

[31]  W. Lu, D. Yuan, A. Yakovenko, H.-C. Zhou, Chem. Commun. 2011, 47, 4968.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslKitbk%3D&md5=2cb741c74890b927bfdd6664de5d4b1bCAS |

[32]  D. K. Chand, M. Fujita, K. Biradha, S. Sakamoto, K. Yamaguchi, Dalton Trans. 2003, 2750.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVCksrg%3D&md5=e614914334082d10ac7605235dadc9daCAS |

[33]  J.-R. Li, J. Yu, W. Lu, L.-B. Sun, J. Sculley, P. B. Balbuena, H.-C. Zhou, Nat. Commun. 2013, 4, 1538.
         | Crossref | GoogleScholarGoogle Scholar | 23443566PubMed |

[34]  D. J. Bray, J. K. Clegg, L. F. Lindoy, D. Schilter, Adv. Inorg. Chem. 2006, 59, 1.

[35]  J. K. Clegg, L. F. Lindoy, B. Moubaraki, K. S. Murray, J. C. McMurtrie, Dalton Trans. 2004, 2417.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlyrtrY%3D&md5=9d23ba85b52f93518289ac51051e1fb0CAS | 15303153PubMed |

[36]  J. K. Clegg, S. S. Iremonger, M. J. Hayter, P. D. Southon, R. B. Macquart, M. B. Duriska, P. Jensen, P. Turner, K. A. Jolliffe, C. J. Kepert, Angew. Chem., Int. Ed. 2010, 49, 1075.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGktb4%3D&md5=fe22379fe264e237dbf53b200d05d6aeCAS |

[37]  J. K. Clegg, F. Li, K. A. Jolliffe, G. V. Meehan, L. F. Lindoy, Chem. Commun. 2011, 47, 6042.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVyisro%3D&md5=04b53d69e526e4389c2dc2a807c624b9CAS |

[38]  X. Song, X. Liu, M. Oh, M. S. Lah, Dalton Trans. 2010, 39, 6178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVOlsbc%3D&md5=eb08eb340421248649af743563db2235CAS | 20532282PubMed |

[39]  Z. Ni, A. Yassar, T. Antoun, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 12752.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1CnsL0%3D&md5=f5abac3f73e2839dc7a658207d178e2dCAS | 16159240PubMed |

[40]  K. Suzuki, M. Tominaga, M. Kawano, M. Fujita, Chem. Commun. 2009, 1638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1antL4%3D&md5=9b74c066d15dc5b6d5078a70f5b6fcf1CAS |

[41]  J.-R. Li, D. J. Timmons, H.-C. Zhou, J. Am. Chem. Soc. 2009, 131, 6368.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslCqs7k%3D&md5=1579d9df502418852a4484fca72898c1CAS | 19374418PubMed |

[42]  J. R. Li, H. C. Zhou, Angew. Chem., Int. Ed. 2009, 121, 8617.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  P. J. Stang, N. E. Persky, J. Manna, J. Am. Chem. Soc. 1997, 119, 4777.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjt1Cgtro%3D&md5=f0ffc11c754ffdef39965f2320dab43fCAS |

[44]  M. Fujita, M. Aoyagi, K. Ogura, Inorg. Chim. Acta 1996, 246, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjvF2rur4%3D&md5=01e64a18444867856bff2ab39fef4b3fCAS |

[45]  M. Schmitz, S. Leininger, J. Fan, A. M. Arif, P. J. Stang, Organometallics 1999, 18, 4817.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1yjs7k%3D&md5=cdea706fdae13d666a502de533d76b54CAS |

[46]  L. Zhao, K. Ghosh, Y. Zheng, M. M. Lyndon, T. I. Williams, P. J. Stang, Inorg. Chem. 2009, 48, 5590.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFalsrs%3D&md5=8b73c24f0a68b5a5c7117a659bccf1e1CAS | 19476323PubMed |

[47]  H.-B. Yang, K. Ghosh, B. H. Northrop, Y.-R. Zheng, M. M. Lyndon, D. C. Muddiman, P. J. Stang, J. Am. Chem. Soc. 2007, 129, 14187.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1arsb7P&md5=38a74a5343675884aebcc86ea586bdadCAS | 17963382PubMed |

[48]  (a) H.-B. Yang, N. Das, F. Huang, A. M. Hawkridge, D. C. Muddiman, P. J. Stang, J. Am. Chem. Soc. 2006, 128, 10014.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFejurs%3D&md5=e561241eaa7449a79453e0dbbc949674CAS | 16881621PubMed |
      (b) H.-B. Yang, A. M. Hawkridge, S. D. Huang, N. Das, S. D. Bunge, D. C. Muddiman, P. J. Stang, J. Am. Chem. Soc. 2007, 129, 2120.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  H.-B. Yang, K. Ghosh, Y. Zhao, B. H. Northrop, M. M. Lyndon, D. C. Muddiman, H. S. White, P. J. Stang, J. Am. Chem. Soc. 2008, 130, 839.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlygsg%3D%3D&md5=16b8b8d9c1c72583f08a12a69a37b6abCAS | 18166061PubMed |

[50]  L. Zhao, K. Ghosh, Y.-R. Zheng, P. J. Stang, J. Org. Chem. 2009, 74, 8516.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OktbfI&md5=9d7e258b2e466c55df0c23a6686a2d8cCAS | 19835395PubMed |

[51]  M. Eddaoudi, J. Kim, J. Wachter, H. Chae, M. O’keeffe, O. Yaghi, J. Am. Chem. Soc. 2001, 123, 4368.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1ylurs%3D&md5=4372a85452a4ba6874059d44635835beCAS | 11457217PubMed |

[52]  (a) H. Furukawa, J. Kim, K. E. Plass, O. M. Yaghi, J. Am. Chem. Soc. 2006, 128, 8398.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFegtbc%3D&md5=ef363d840c1ae4e99ae70fe846b691fdCAS | 16802795PubMed |
      (b) H. Furukawa, J. Kim, N. W. Ockwig, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2008, 130, 11650.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. Zhao, S. Tan, D. Yuan, W. Lu, Y. H. Rezenom, H. Jiang, L. Q. Wang, H. C. Zhou, Adv. Mater. 2011, 23, 90.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  T.-F. Liu, Y.-P. Chen, A. A. Yakovenko, H.-C. Zhou, J. Am. Chem. Soc. 2012, 134, 17358.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKmtbrE&md5=d5db9ce3f91f0c814e58624a484c9297CAS | 23043458PubMed |

[54]  D. Zhao, D. Yuan, R. Krishna, J. M. van Baten, H.-C. Zhou, Chem. Commun. 2010, 46, 7352.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Snt73K&md5=e6fa91dc11b65bbd69995fb5efec3b13CAS |

[55]  M. Jung, H. Kim, K. Baek, K. Kim, Angew. Chem., Int. Ed. 2008, 47, 5755.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsFKku7c%3D&md5=d610df8ebf217b5558be89c43366e904CAS |

[56]  J.-R. Li, H.-C. Zhou, Nat. Chem. 2010, 2, 893.
         | Crossref | GoogleScholarGoogle Scholar | 20861907PubMed |

[57]  (a) M. Tominaga, K. Suzuki, M. Kawano, T. Kusukawa, T. Ozeki, S. Sakamoto, K. Yamaguchi, M. Fujita, Angew. Chem., Int. Ed. 2004, 116, 5739.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) D. Fujita, A. Takahashi, S. Sato, M. Fujita, J. Am. Chem. Soc. 2011, 133, 13317.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  M. Tominaga, K. Suzuki, T. Murase, M. Fujita, J. Am. Chem. Soc. 2005, 127, 11950.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVChurk%3D&md5=fe315f266cfd0f08bc6c78a239e9dfacCAS | 16117528PubMed |

[59]  T. Murase, S. Sato, M. Fujita, Angew. Chem., Int. Ed. 2007, 119, 1101.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  D. Fujita, K. Suzuki, S. Sato, M. Yagi-Utsumi, Y. Yamaguchi, N. Mizuno, T. Kumasaka, M. Takata, M. Noda, S. Uchiyama, Nat. Commun. 2012, 3, 1093.
         | Crossref | GoogleScholarGoogle Scholar | 23033069PubMed |

[61]  S. Sato, J. Iida, K. Suzuki, M. Kawano, T. Ozeki, M. Fujita, Science 2006, 313, 1273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslOntLk%3D&md5=6946240aeb83f70b9eb2eb4a4e7f3a05CAS | 16946067PubMed |

[62]  M. Ikemi, T. Kikuchi, S. Matsumura, K. Shiba, S. Sato, M. Fujita, Chem. Sci. 2010, 1, 68.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWhtLo%3D&md5=786a0e0379f73493431c91cae99bd6e7CAS |

[63]  (a) N. Kamiya, M. Tominaga, S. Sato, M. Fujita, J. Am. Chem. Soc. 2007, 129, 3816.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisFeitr8%3D&md5=76d4d585b866eacbe6ac306b89f77629CAS | 17343384PubMed |
      (b) T. Kikuchi, S. Sato, M. Fujita, J. Am. Chem. Soc. 2010, 132, 15930.
         | Crossref | GoogleScholarGoogle Scholar |

[64]  Q.-F. Sun, S. Sato, M. Fujita, Nat. Chem. 2012, 4, 330.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Whsb4%3D&md5=84050f65d640e2cfb3812d34fd763e1bCAS | 22437720PubMed |

[65]  Q.-F. Sun, J. Iwasa, D. Ogawa, Y. Ishido, S. Sato, T. Ozeki, Y. Sei, K. Yamaguchi, M. Fujita, Science 2010, 328, 1144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVGjsL4%3D&md5=d99ba40f40d4b5f3124617eddc2ef522CAS | 20430973PubMed |

[66]  (a) M. Fujita, J. Yazaki, K. Ogura, J. Am. Chem. Soc. 1990, 112, 5645.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksFWntbo%3D&md5=d5c0fd6ca39582387f07fc33eadb5f76CAS |
      (b) P. J. Stang, D. H. Cao, J. Am. Chem. Soc. 1994, 116, 4981.
         | Crossref | GoogleScholarGoogle Scholar |

[67]  M. Fujita, O. Sasaki, T. Mitsuhashi, T. Fujita, J. Yazaki, K. Yamaguchi, K. Ogura, Chem. Commun. 1996, 1535.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksVWmt74%3D&md5=7090f032da8dc7bc228a98db060cd0a0CAS |

[68]  T. Weilandt, R. W. Troff, H. Saxell, K. Rissanen, C. A. Schalley, Inorg. Chem. 2008, 47, 7588.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1ygs70%3D&md5=0e3638b94bc3558a320d06c5b287c6bdCAS | 18680283PubMed |

[69]  Y.-R. Zheng, H.-B. Yang, B. H. Northrop, K. Ghosh, P. J. Stang, Inorg. Chem. 2008, 47, 4706.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFKitbo%3D&md5=513720cfeaeb49e41437efa0077dabc2CAS | 18433099PubMed |

[70]  S. Heath, J. Thomas, Chem. Commun. 1998, 1681.

[71]  Y. K. Kryschenko, S. R. Seidel, A. M. Arif, P. J. Stang, J. Am. Chem. Soc. 2003, 125, 5193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisFWhurs%3D&md5=f15a5f7f4cdfff5069ba758719126decCAS | 12708871PubMed |

[72]  C. J. Kuehl, S. D. Huang, P. J. Stang, J. Am. Chem. Soc. 2001, 123, 9634.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsVyrsLY%3D&md5=bd2196355548dfbae905aa2d0a966a54CAS | 11572685PubMed |

[73]  T. Rajendran, B. Manimaran, R.-T. Liao, R.-J. Lin, P. Thanasekaran, G.-H. Lee, S.-M. Peng, Y.-H. Liu, I.-J. Chang, S. Rajagopal, Inorg. Chem. 2003, 42, 6388.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Klurw%3D&md5=c3fe41a76b8c5ce9cf715a69b67fe4efCAS | 14514314PubMed |

[74]  A. C. Sudik, A. R. Millward, N. W. Ockwig, A. P. Côté, J. Kim, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 7110.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtl2ntLg%3D&md5=69d80ca4b66e808cd73b270e438306c8CAS | 15884953PubMed |

[75]  Y.-R. Zheng, Z. Zhao, M. Wang, K. Ghosh, J. B. Pollock, T. R. Cook, P. J. Stang, J. Am. Chem. Soc. 2010, 132, 16873.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyhtb7I&md5=30d2231b5deb4c342156782201506b64CAS | 21053935PubMed |

[76]  (a) B. A. Borgias, S. J. Barclay, K. N. Raymond, J. Coord. Chem. 1986, 15, 109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXnslGrsQ%3D%3D&md5=cf6c74396607ce89be254205d93ef1c6CAS |
      (b) B. Borgias, A. D. Hugi, K. N. Raymond, Inorg. Chem. 1989, 28, 3538.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. T. Caudle, A. L. Crumbliss, Inorg. Chem. 1994, 33, 4077.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. M. Garrett, P. W. Miller, K. N. Raymond, Inorg. Chem. 1989, 28, 128.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) T. B. Karpishin, T. Stack, K. N. Raymond, J. Am. Chem. Soc. 1993, 115, 6115.
         | Crossref | GoogleScholarGoogle Scholar |

[77]  M. D. Ward, Chem. Commun. 2009, 4487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslClsr4%3D&md5=90b362caabceb5d6f0bc0a7f0572d89eCAS |

[78]  (a) J. S. Fleming, K. L. Mann, C. A. Carraz, E. Psillakis, J. C. Jeffery, J. A. McCleverty, M. D. Ward, Angew. Chem., Int. Ed. 1998, 37, 1279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs1egtLo%3D&md5=7c00500d67a70c193cec2174142f1200CAS |
      (b) R. L. Paul, Z. R. Bell, J. C. Jeffery, J. A. McCleverty, M. D. Ward, Proc. Natl. Acad. Sci. USA 2002, 99, 4883.
         | Crossref | GoogleScholarGoogle Scholar |

[79]  (a) R. L. Paul, Z. R. Bell, J. C. Jeffery, L. P. Harding, J. A. McCleverty, M. D. Ward, Polyhedron 2003, 22, 781.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Kht7g%3D&md5=1b20c3a7ca54c734c0bfb90176adf8e2CAS |
      (b) I. S. Tidmarsh, B. F. Taylor, M. J. Hardie, L. Russo, W. Clegg, M. D. Ward, New J. Chem. 2009, 33, 366.
         | Crossref | GoogleScholarGoogle Scholar |

[80]  (a) R. L. Paul, S. P. Argent, J. C. Jeffery, L. P. Harding, J. M. Lynam, M. D. Ward, Dalton Trans. 2004, 3453.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovFOhs7s%3D&md5=976dc0a295ba33439e89c3ae6a147b7bCAS | 15510262PubMed |
      (b) B. R. Hall, L. E. Manck, I. S. Tidmarsh, A. Stephenson, B. F. Taylor, E. J. Blaikie, D. A. Vander Griend, M. D. Ward, Dalton Trans. 2011, 40, 12132.
         | Crossref | GoogleScholarGoogle Scholar |

[81]  Z. R. Bell, J. C. Jeffery, J. A. McCleverty, M. D. Ward, Angew. Chem., Int. Ed. 2002, 41, 2515.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Oitb0%3D&md5=0ded03f94891f74c3d4aada015608530CAS |

[82]  (a) S. P. Argent, H. Adams, T. Riis-Johannessen, J. C. Jeffery, L. P. Harding, M. D. Ward, J. Am. Chem. Soc. 2006, 128, 72.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ynsr7J&md5=3a3b7a0d7be3ad7588d9a99749d382ebCAS | 16390127PubMed |
      (b) N. K. Al-Rasbi, I. S. Tidmarsh, S. P. Argent, H. Adams, L. P. Harding, M. D. Ward, J. Am. Chem. Soc. 2008, 130, 11641.
         | Crossref | GoogleScholarGoogle Scholar |

[83]  (a) D. L. Caulder, K. N. Raymond, Angew. Chem., Int. Ed. Engl. 1997, 36, 1440.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsVertbs%3D&md5=b789324e756b20f82773e2601a58b83aCAS |
      (b) B. Kersting, M. Meyer, R. E. Powers, K. N. Raymond, J. Am. Chem. Soc. 1996, 118, 7221.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Meyer, B. Kersting, R. E. Powers, K. N. Raymond, Inorg. Chem. 1997, 36, 5179.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Albrecht, S. Kotila, Angew. Chem., Int. Ed. Engl. 1996, 35, 1208.
         | Crossref | GoogleScholarGoogle Scholar |

[84]  J. Xu, T. N. Parac, K. N. Raymond, Angew. Chem., Int. Ed. 1999, 38, 2878.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslKhtrg%3D&md5=8f920a90716dfbded0249b28e8742171CAS |

[85]  (a) T. Beissel, R. E. Powers, K. N. Raymond, Angew. Chem., Int. Ed. Engl. 1996, 35, 1084.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsFGksrY%3D&md5=e6b43aff7ca6a64f0e4d513f121d87a3CAS |
      (b) D. L. Caulder, R. E. Powers, T. N. Parac, K. N. Raymond, Angew. Chem., Int. Ed. 1998, 37, 1840.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Scherer, D. L. Caulder, D. W. Johnson, K. N. Raymond, Angew. Chem., Int. Ed. 1999, 38, 1587.
         | Crossref | GoogleScholarGoogle Scholar |

[86]  C. Brückner, R. E. Powers, K. N. Raymond, Angew. Chem., Int. Ed. 1998, 37, 1837.
         | Crossref | GoogleScholarGoogle Scholar |

[87]  C. J. Brown, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2009, 131, 17530.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSgtL7F&md5=4206948a3a77378ea613ed03f7b1ffdeCAS | 19950985PubMed |

[88]  V. M. Dong, D. Fiedler, B. Carl, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2006, 128, 14464.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2jsLzP&md5=8e16a50789c137bb701c04a9c115ca74CAS | 17090022PubMed |

[89]  D. H. Leung, D. Fiedler, R. G. Bergman, K. N. Raymond, Angew. Chem. 2004, 116, 981.
         | Crossref | GoogleScholarGoogle Scholar |

[90]  J. S. Mugridge, A. Zahl, R. van Eldik, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2013, 135, 4299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1SqsL4%3D&md5=d15514aca8f315d29db2b918c4e6009eCAS | 23391095PubMed |

[91]  C. J. Brown, G. M. Miller, M. W. Johnson, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2011, 133, 11964.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVSks7g%3D&md5=37dfed3b2e60a57333f8f0f4776d61deCAS | 21736357PubMed |

[92]  Z. J. Wang, K. N. Clary, R. G. Bergman, K. N. Raymond, F. D. Toste, Nat. Chem. 2013, 5, 100.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslGjsg%3D%3D&md5=4af2ba126d54f7f764288396f327998aCAS | 23344446PubMed |

[93]  S. Leininger, J. Fan, M. Schmitz, P. J. Stang, Proc. Natl. Acad. Sci. USA 2000, 97, 1380.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsFCkurg%3D&md5=1006cd4bda80fc8e59327eaf80687a84CAS | 10677470PubMed |

[94]  P. J. Stang, B. Olenyuk, D. C. Muddiman, R. D. Smith, Organometallics 1997, 16, 3094.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvVGls70%3D&md5=2cbfeae245b288576a98ecdbfd359a0fCAS |

[95]  M. Schweiger, T. Yamamoto, P. J. Stang, D. Bläser, R. Boese, J. Org. Chem. 2005, 70, 4861.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktF2ltLc%3D&md5=0a2d2ace97c4ae053319e614c368d6b5CAS | 15932331PubMed |

[96]  M. Fujita, D. Oguro, M. Miyazawa, H. Oka, K. Yamaguchi, K. Ogura, Nature 1995, 378, 469.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXps1ymur0%3D&md5=78ef314cac7210615e4dac383e40ef93CAS |

[97]  T. Kusukawa, M. Fujita, Angew. Chem., Int. Ed. 1998, 37, 3142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlSl&md5=72681ea11c670dad6b38fa7ee4432cb9CAS |

[98]  F. Ibukuro, T. Kusukawa, M. Fujita, J. Am. Chem. Soc. 1998, 120, 8561.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvF2ms7s%3D&md5=ffc995197bf132e8b5ee5e7e47573e24CAS |

[99]  (a) M. Yoshizawa, Y. Takeyama, T. Kusukawa, M. Fujita, Angew. Chem., Int. Ed. 2002, 114, 1403.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. Yoshizawa, Y. Takeyama, T. Okano, M. Fujita, J. Am. Chem. Soc. 2003, 125, 3243.
         | Crossref | GoogleScholarGoogle Scholar |

[100]  T. Murase, S. Horiuchi, M. Fujita, J. Am. Chem. Soc. 2010, 132, 2866.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFOrsLs%3D&md5=75781222ed7fdd5e589a858296733939CAS | 20155904PubMed |

[101]  T. Murase, Y. Nishijima, M. Fujita, J. Am. Chem. Soc. 2012, 134, 162.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFyltbbP&md5=6b55b5f755e5502ebcb177d17cdf46cfCAS | 22145970PubMed |

[102]  S. Tashiro, M. Tominaga, M. Kawano, B. Therrien, T. Ozeki, M. Fujita, J. Am. Chem. Soc. 2005, 127, 4546.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVClsbs%3D&md5=417473aee914adda7ba9e745609d96dcCAS | 15796499PubMed |

[103]  (a) M. Yoshizawa, T. Kusukawa, M. Fujita, K. Yamaguchi, J. Am. Chem. Soc. 2000, 122, 6311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVehsL0%3D&md5=b2217e357d460ac75eccaaa01697268fCAS |
      (b) W.-Y. Sun, T. Kusukawa, M. Fujita, J. Am. Chem. Soc. 2002, 124, 11570.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Kawano, Y. Kobayashi, T. Ozeki, M. Fujita, J. Am. Chem. Soc. 2006, 128, 6558.
         | Crossref | GoogleScholarGoogle Scholar |

[104]  M. Yoshizawa, M. Tamura, M. Fujita, J. Am. Chem. Soc. 2004, 126, 6846.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFSgtLo%3D&md5=e7ea528abf1685ed82eb8b09510bfb27CAS | 15174836PubMed |

[105]  T. Murase, Y. Nishijima, M. Fujita, Chem. – Asian J. 2012, 7, 826.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyiu7w%3D&md5=1faaa8fa653f4c03d8ca19cc75396edbCAS | 22311687PubMed |

[106]  H. Takezawa, T. Murase, G. Resnati, P. Metrangolo, M. Fujita, J. Am. Chem. Soc. 2014, 136, 1786.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotVCjug%3D%3D&md5=543c150af0b4b2a13fa20dd71c889858CAS | 24422785PubMed |

[107]  Y. Kohyama, T. Murase, M. Fujita, J. Am. Chem. Soc. 2014, 136, 2966.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFKns74%3D&md5=8df43d30a7da4a22c9d9e81810e832a4CAS | 24512535PubMed |

[108]  K. Umemoto, K. Yamaguchi, M. Fujita, J. Am. Chem. Soc. 2000, 122, 7150.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1ehtL8%3D&md5=c2058a9155e8a3b35b3ca15ce3d50d4bCAS |

[109]  N. Takeda, K. Umemoto, K. Yamaguchi, M. Fujita, Nature 1999, 398, 794.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVSrsr0%3D&md5=07587dbd6e5ab4fb98a8a61ad9e09863CAS |

[110]  J. D. Hartgerink, T. D. Clark, M. R. Ghadiri, Chem. – Eur. J. 1998, 4, 1367.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFentLw%3D&md5=d449907d7b5164a52937746148e8350dCAS |

[111]  N. Fujita, K. Biradha, M. Fujita, S. Sakamoto, K. Yamaguchi, Angew. Chem., Int. Ed. 2001, 40, 1718.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslCgsrc%3D&md5=eda9ebc427d4b1cb6e30ef1ef4c110c7CAS |

[112]  A. K. Bar, R. Chakrabarty, G. Mostafa, P. S. Mukherjee, Angew. Chem., Int. Ed. 2008, 47, 8455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKlsrnP&md5=893a174e70a9bd97811b4f5bf5f41509CAS |

[113]  N. P. Barry, P. Govindaswamy, J. Furrer, G. Süss-Fink, B. Therrien, Inorg. Chem. Commun. 2008, 11, 1300.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ShsLjI&md5=2f687fc0c4a836fdafff81d7b456510bCAS |

[114]  D. C. Caskey, T. Yamamoto, C. Addicott, R. K. Shoemaker, J. Vacek, A. M. Hawkridge, D. C. Muddiman, G. S. Kottas, J. Michl, P. J. Stang, J. Am. Chem. Soc. 2008, 130, 7620.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVOgur8%3D&md5=13750ba693d68b47aeb0a7e1ff94bf4eCAS | 18491898PubMed |

[115]  M. Schmittel, B. He, P. Mal, Org. Lett. 2008, 10, 2513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlWnurY%3D&md5=fabcb108b486916e2353c1e3ee8afb32CAS | 18503275PubMed |

[116]  D. Moon, S. Kang, J. Park, K. Lee, R. P. John, H. Won, G. H. Seong, Y. S. Kim, G. H. Kim, H. Rhee, M. S. Lah, J. Am. Chem. Soc. 2006, 128, 3530.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Grtbk%3D&md5=4f822451286a26bec3a452c13a110d89CAS | 16536521PubMed |

[117]  S. Ghosh, P. S. Mukherjee, J. Org. Chem. 2006, 71, 8412.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCht7zF&md5=3ddd65425015f3bad2b7fd4ed3a0f30fCAS | 17064013PubMed |

[118]  Z. Lu, C. B. Knobler, H. Furukawa, B. Wang, G. Liu, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 12532.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSisL7P&md5=91de94387af07f0b0d9425eb71546322CAS | 19689142PubMed |

[119]  (a) V. E. Campbell, X. De Hatten, N. Delsuc, B. Kauffmann, I. Huc, J. R. Nitschke, Nat. Chem. 2010, 2, 684.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1aktr4%3D&md5=eff86f4ac0af561ae8f3026663010ee2CAS | 20651733PubMed |
      (b) M. Hannon, C. Painting, Chem. Commun. 1997, 1807.
         | Crossref | GoogleScholarGoogle Scholar |

[120]  (a) T. K. Ronson, S. Zarra, S. P. Black, J. R. Nitschke, Chem. Commun. 2013, 49, 2476.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlyjt7o%3D&md5=e2309f217eba1423304166b200807d94CAS |
      (b) Y. Wu, X.-P. Zhou, J.-R. Yang, D. Li, Chem. Commun. 2013, 49, 3413.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Yi, V. Brega, B. Captain, A. E. Kaifer, Chem. Commun. 2012, 48, 10295.
         | Crossref | GoogleScholarGoogle Scholar |

[121]  (a) K. Osowska, O. Š. Miljanić, Angew. Chem., Int. Ed. 2011, 50, 8345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVOgtro%3D&md5=ca08b21903809da9b07919068c4fec7bCAS |
      (b) M. E. Belowich, J. F. Stoddart, Chem. Soc. Rev. 2012, 41, 2003.
         | Crossref | GoogleScholarGoogle Scholar |

[122]  (a) J. R. Nitschke, Acc. Chem. Res. 2007, 40, 103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2gt7jE&md5=b8aaebce2d6b4ef3652960602cb7f2afCAS | 17309191PubMed |
      (b) M. M. Smulders, I. A. Riddell, C. Browne, J. R. Nitschke, Chem. Soc. Rev. 2013, 42, 1728.
         | Crossref | GoogleScholarGoogle Scholar |

[123]  P. Mal, D. Schultz, K. Beyeh, K. Rissanen, J. R. Nitschke, Angew. Chem., Int. Ed. 2008, 120, 8421.
         | Crossref | GoogleScholarGoogle Scholar |

[124]  I. A. Riddell, M. M. J. Smulders, J. K. Clegg, J. R. Nitschke, Chem. Commun. 2011, 47, 457.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFeqtbzE&md5=b54c9dc124e5d988904803d32f62be04CAS |

[125]  P. Mal, B. Breiner, K. Rissanen, J. R. Nitschke, Science 2009, 324, 1697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFOmsb0%3D&md5=ea4507d322878ce22710b46a7801e66fCAS | 19556504PubMed |

[126]  (a) M. M. J. Smulders, A. Jiménez, J. R. Nitschke, Angew. Chem., Int. Ed. 2012, 51, 6681.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVejsb4%3D&md5=92db23ea5504fc9ce094d91c9e59138dCAS |
      (b) W. Meng, J. K. Clegg, J. D. Thoburn, J. R. Nitschke, J. Am. Chem. Soc. 2011, 133, 13652.
         | Crossref | GoogleScholarGoogle Scholar |

[127]  Y. R. Hristova, M. M .J. Smulders, J. K. Clegg, B. Breiner, J. R. Nitschke, Chem. Sci. 2011, 2, 638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFGltL8%3D&md5=b41f04e52746a9652bb28d44cc63d60aCAS |

[128]  D. Schultz, J. R. Nitschke, J. Am. Chem. Soc. 2006, 128, 9887.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1SltbY%3D&md5=dd7157d24ab92d7c602fa9cbf5416dd7CAS | 16866547PubMed |

[129]  R. A. Bilbeisi, J. K. Clegg, N. Elgrishi, X. D. Hatten, M. Devillard, B. Breiner, P. Mal, J. R. Nitschke, J. Am. Chem. Soc. 2012, 134, 5110.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSks73E&md5=e22dafdcfa8db7e43a49d3f380275ae5CAS | 22043943PubMed |

[130]  R. A. Bilbeisi, T. K. Ronson, J. R. Nitschke, Angew. Chem., Int. Ed. 2013, 125, 9197.
         | Crossref | GoogleScholarGoogle Scholar |

[131]  R. Custelcean, J. Bosano, P. V. Bonnesen, V. Kertesz, B. P. Hay, Angew. Chem. 2009, 121, 4085.
         | Crossref | GoogleScholarGoogle Scholar |

[132]  J. K. Clegg, J. Cremers, A. J. Hogben, B. Breiner, M. M. J. Smulders, J. D. Thoburn, J. R. Nitschke, Chem. Sci. 2013, 4, 68.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKktbfO&md5=cdab257cd0ddac46939daaa0b04b0302CAS |

[133]  J. Mosquera, S. Zarra, J. R. Nitschke, Angew. Chem., Int. Ed. 2014, 53, 1556.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVShsb%2FM&md5=1542643332093d2f179d6b39834361d0CAS |

[134]  W. Meng, T. K. Ronson, J. K. Clegg, J. R. Nitschke, Angew. Chem., Int. Ed. 2013, 125, 1051.
         | Crossref | GoogleScholarGoogle Scholar |

[135]  W. Meng, A. B. League, T. K. Ronson, J. K. Clegg, W. C. Isley, D. Semrouni, L. Gagliardi, C. J. Cramer, J. R. Nitschke, J. Am. Chem. Soc. 2014, 136, 3972.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslKjuw%3D%3D&md5=bd8dc3f2dc2edfb1ee246f49f6c7bd4eCAS | 24446911PubMed |

[136]  A. Jiménez, R. A. Bilbeisi, T. K. Ronson, S. Zarra, C. Woodhead, J. R. Nitschke, Angew. Chem., Int. Ed. 2014, 53, 4556.
         | Crossref | GoogleScholarGoogle Scholar |