Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

A View Through Novel Process Windows

Stefan C. Stouten A , Timothy Noël A , Qi Wang A and Volker Hessel A B
+ Author Affiliations
- Author Affiliations

A Laboratory of Chemical Reactor Engineering/Micro Flow Chemistry and Process Technology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.

B Corresponding author. Email: v.hessel@tue.nl




Stefan Stouten received a M.Sc. degree in chemical engineering from Eindhoven University of Technology in 2010, specializing in molecular engineering. He has been a PhD student at the same university since 2011, working on innovative reaction environments in micro flow processing in the group of Professor Volker Hessel. His research interests are focussed on micro flow chemistry, supercritical fluids, and catalysis.



Dr Timothy Noël was born in Aalst, Belgium. He received a M.Sc. degree (industrial chemical engineering) from the KaHo Sint-Lieven in 2004. In 2009, he received his Ph.D. from the University of Ghent under the supervision of Professor Johan Van der Eycken (Department of Organic Chemistry). He then moved to Massachusetts Institute of Technology as a Fulbright Postdoctoral Fellow with Professor Stephen L. Buchwald (Department of Chemistry), where he worked on flow chemistry (MIT-Novartis Center for Continuous Manufacturing). In 2012, he accepted a position as Assistant Professor in the group of Professor Volker Hessel at Eindhoven University of Technology. In 2011, Dr Noël received an Incentive Award for Young Researchers from the Comité de Gestion du Bulletin des Sociétés Chimiques Belges, and in 2012 he received a prestigious Veni award from the Dutch Government (NWO). His research interests are in flow chemistry, organic synthetic chemistry and catalysis.



Dr Qi Wang studied chemical engineering at Hebei University of Technology (China) from 1999 to 2003 and received her M.Sc. in chemical engineering at the same university in 2006. She received her Ph.D. in chemical engineering from Tsinghua University (China) in 2010. She conducted post-doctoral research at Eindhoven University of Technology in the chemical engineering research group of Professor Volker Hessel. Her research interests lie in the development of holistic approaches for micro flow process design.



Professor Dr Volker Hessel studied chemistry at Mainz University. He has been working at the Institut für Mikrotechnik Mainz GmbH since 1994. In 1999, he was appointed Head of the Microreaction Technology Department. In 2002, Professor Hessel was appointed Vice Director R&D at IMM, and Director R&D at IMM in 2007. He is the author and co-author of more than 200 peer-reviewed publications (with 29 extended reviews), 16 book chapters, and 5 books. In 2005, he was appointed as a part-time professor to the chair of ‘Micro Process Engineering’ at Eindhoven University of Technology. In 2009, he was appointed as an honorary professor in the Technical Chemistry Department at the Technical University of Darmstadt, and he is a Fellow of the Cluster of Excellence ‘Smart Interfaces.’ He was appointed as a full professor to the chair of ‘Micro Flow Chemistry and Process Technology’ at Eindhoven University of Technology in 2011. Professor Hessel received the AIChE award for ‘Excellence in Process Development Research’ in 2007. He received the ERC Advanced Grant for ‘Novel Process Windows’ in 2010, and is Editor-in-Chief of the journal Green Processing and Synthesis.

Australian Journal of Chemistry 66(2) 121-130 https://doi.org/10.1071/CH12465
Submitted: 10 October 2012  Accepted: 5 December 2012   Published: 4 January 2013

Abstract

This mini-review discusses some of the recent work on novel process windows by the Micro Flow Chemistry and Process Technology group at the Eindhoven University of Technology, and their associates. Novel process windows consist of unconventional approaches to boost chemical production, often requiring harsh reaction conditions at short to very short time-scales. These approaches are divided into six routes: the use of high temperatures, high pressures, and high concentrations (or solvent-free), new chemical transformations, explosive conditions, and process simplification and integration. Microstructured reactors, due to their inherent safety, short time-scales, and the high degree of process control, are the means that make such extreme chemistry possible.


References

[1]  V. Kumar, K. D. P. Nigam, Green Process. Syn. 2012, 1, 79.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  S. Becht, R. Franke, A. Geißelmann, H. Hahn, Chem. Eng. Process.: Process Intensification 2009, 48, 329.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVymtbnP&md5=2b3f09bc606ca302b7ac12224e01e72aCAS |

[3]  V. Hessel, Chem. Eng. Technol. 2009, 32, 1655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCrsL%2FN&md5=dd50223d3f119ca79a9c9d202bb365aeCAS |

[4]  V. Hessel, Q. Wang, Chim. Oggi 2011, 29, 81.
         | 1:CAS:528:DC%2BC3MXps1Onsbw%3D&md5=442113bed695091f25383a7faec1801eCAS |

[5]  V. Hessel, Q. Wang, Chim. Oggi 2011, 29, 54.

[6]  V. Hessel, B. Cortese, M. H. J. M. de Croon, Chem. Eng. Sci. 2011, 66, 1426.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsV2it7o%3D&md5=fb8691a7d3fa358b5c8bcc8c61b13087CAS |

[7]  Q. Wang, V. Hessel, E. V. Rebrov, B. Werner, Chem. Eng. Technol. 2011, 34, 379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVyktLc%3D&md5=8656d680965ab57e7bec74af3dc267f1CAS |

[8]  K. Jähnisch, V. Hessel, H. Löwe, M. Baerns, Angew. Chem. Int. Ed. 2004, 43, 406.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  T. Noël, S. L. Buchwald, Chem. Soc. Rev. 2011, 40, 5010.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  G. Veser, Chem. Eng. Sci. 2001, 56, 1265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslOhs7o%3D&md5=669ddbab7c2e7f28d9a38556a2a40112CAS |

[11]  J. Fischer, C. Liebner, H. Hieronymus, E. Klemm, Chem. Eng. Sci. 2009, 64, 2951.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWktLk%3D&md5=81e98e5c9ab52f7d278d2df8a3f5777dCAS |

[12]  N. Kockmann, M. Gottsponer, D. M. Roberge, Chem. Eng. J. 2011, 167, 718.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFGls78%3D&md5=cfab65e1dd887e0ac4215adeb01eafa3CAS |

[13]  P. Löb, H. Löwe, V. Hessel, J. Fluor. Chem. 2004, 125, 1677.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  V. Hessel, P. Löb, H. Löwe, Chim. Oggi 2004, 22, 10.
         | 1:CAS:528:DC%2BD2cXntVeltrw%3D&md5=bc73cc1ebaf4bd3f95318fcd9a14e065CAS |

[15]  P. Löb, V. Hessel, H. Klefenz, H. Löwe, K. Mazanek, Lett. Org. Chem. 2005, 2, 767.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  K. Jähnisch, M. Baerns, V. Hessel, W. Erhfeld, V. Haverkamp, H. Löwe, C. Wille, A. Guber, J. Fluor. Chem. 2000, 105, 117.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  L. Hilterhaus, O. Thum, A. Liese, Org. Process Res. Dev. 2008, 12, 618.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVynsL4%3D&md5=7a8f954cee834304f0318f2308acbd0aCAS |

[18]  Y. Asanomi, H. Yamaguchi, M. Miyazaki, H. Maeda, Molecules 2011, 16, 6041.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVCnsrjM&md5=a2d5e1f02e04be060a63b0ac0107d76fCAS |

[19]  B. Krajewska, Enzyme Microb. Technol. 2004, 35, 126.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1ehs74%3D&md5=3bd35743ca4f2d0dbb097d8d538a0619CAS |

[20]  S. Matsuura, R. Ishii, T. Itoh, S. Hamakawa, T. Tsunoda, T. Hanaoka, F. Mizukami, Chem. Eng. J. 2011, 167, 744.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFGls7o%3D&md5=cfaaaff31215a09d22168f67f2547d35CAS |

[21]  G. Dräger, C. Kiss, U. Kunz, A. Kirschning, Org. Biomol. Chem. 2007, 5, 3657.

[22]  P. L. Urban, D. M. Goodall, N. C. Bruce, Biotechnol. Adv. 2006, 24, 42.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1OntbfP&md5=0804b2f359a827d75d64185bfe905f37CAS |

[23]  J. M. Bolivar, J. Wiesbauer, B. Nidetzky, Trends Biotechnol. 2011, 29, 333.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKlsr8%3D&md5=e48304e06dbf194c7576607e5598429fCAS |

[24]  M. Tudorache, D. Mahalu, C. Teodorescu, R. Stan, C. Bala, V. I. Parvulescu, J. Mol. Catal., B Enzym. 2011, 69, 133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFaitLs%3D&md5=d4d9838692cd465e0948a9371b5f5d00CAS |

[25]  K. F. Schilke, K. L. Wilson, T. Cantrell, G. Corti, D. N. McIlroy, C. Kelly, Biotechnol. Prog. 2010, 26, 1597.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGhsQ%3D%3D&md5=243a43f9732a70c6684100034ce5d0d0CAS |

[26]  T. Boller, C. Meier, S. Menzler, Org. Process Res. Dev. 2002, 6, 509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1erur8%3D&md5=47173b57d05076d1d582a4f44e39480eCAS |

[27]  H. Fu, I. Dencic, J. Tibhe, C. A. Sanchez Pedraza, Q. Wang, T. Noël, J. Meuldijk, M. de Croon, V. Hessel, N. Weizenmann, T. Oeser, T. Kinkeade, D. Hyatt, S. Van Roy, W. Dejonghe, L. Diels, Chem. Eng. J. 2012, 207–208, 564.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  S. de Vaan, Milli reactor design and testing for a lipase-based biocatalytic flow process 2012, Master’s thesis, Eindhoven University of Technology, The Netherlands.

[29]  D. J. C. Constable, C. Jimenez-Gonzalez, R. K. Henderson, Org. Process Res. Dev. 2007, 11, 133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlansbjP&md5=8ab425eb80b327992f36ca8050ae4a62CAS |

[30]  C. Jimenez-Gonzalez, C. S. Ponder, Q. B. Broxterman, J. B. Manley, Org. Process Res. Dev. 2011, 15, 912.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslGlsro%3D&md5=5afa37774439ae7fd7990df9ba3c1562CAS |

[31]  U. Krtschil, V. Hessel, D. Reinhard, A. Stark, Chem. Eng. Technol. 2009, 32, 1774.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCrsLzK&md5=0725517d4b9c1db0e830e5c7004b3e04CAS |

[32]  F. Benaskar, V. Hessel, U. Krtschil, P. Löb, A. Stark, Org. Process Res. Dev. 2009, 13, 970.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotV2mu7g%3D&md5=00d7900ca30d422b2c6fc5d4395b2d78CAS |

[33]  R. A. Bourne, X. Han, M. Poliakoff, M. W. George, Angew. Chem. Int. Ed. 2009, 48, 5322.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosV2hs7k%3D&md5=482e6a44719763ae3ee463d622fbc7c1CAS |

[34]  X. Han, R. Bourne, M. Poliakoff, M. George, Chem. Sci. 2011, 2, 1059.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtV2it7c%3D&md5=2227ed411cce7a872520d8641835048aCAS |

[35]  V. Hessel, C. Hofmann, P. Löb, J. Löhndorf, H. Löwe, A. Ziogas, Org. Process Res. Dev. 2005, 9, 479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksl2mur0%3D&md5=2f125f3baee15db511246d1530d3d5e6CAS |

[36]  U. Krtschil, V. Hessel, P. Löb, D. Reinhard, S. Hübschmann, D. Kralisch, Chem. Eng. J. 2011, 167, 510.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFGmur8%3D&md5=01797cc4f70e18fd16404b1bd6b61b5aCAS |

[37]  M. Meldal, C. W. Tornøe, Chem. Rev. 2008, 108, 2952.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1yhurk%3D&md5=1e628f9d45ea489fe815d2594b73355fCAS |

[38]  C. D. Smith, I. R. Baxendale, S. Lanners, J. J. Hayward, S. C. Smith, S. V. Ley, Org. Biomol. Chem. 2007, 5, 1559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsV2jtLc%3D&md5=dbb11d5477c3186c84777bdc8ea59a9aCAS |

[39]  A. R. Bogdan, N. W. Sach, Adv. Synth. Catal. 2009, 351, 849.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslOnsLc%3D&md5=91ba1cba359dcbd2b74d4a30a5cc5d77CAS |

[40]  A. R. Bogdan, K. James, Org. Lett. 2011, 13, 4060.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFyku7c%3D&md5=c129de51f31da99474a413245c7944f2CAS |

[41]  A. R. Bogdan, K. James, Chem.–Eur. J. 2010, 16, 14506.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Ghsg%3D%3D&md5=e730179009ccf56ea7d7bf3274a9adb9CAS |

[42]  I. R. Baxendale, S. V. Ley, A. C. Mansfield, C. D. Smith, Angew. Chem. Int. Ed. 2009, 48, 4017.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVKmsL0%3D&md5=dd06826b5dbee6b0e262b78dc727bd21CAS |

[43]  S. Ceylan, T. Klande, C. Vogt, C. Friese, A. Kirschning, Synlett 2010, 13, 2009.

[44]  M. Fuchs, W. Goessler, C. Pilger, C. O. Kappe, Adv. Synth. Catal. 2010, 352, 323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlaqtLo%3D&md5=72769aea29e5b05aef86f593158e4ee2CAS |

[45]  A. C. Varas, T. Noël, Q. Wang, V. Hessel, ChemSusChem 2012, 5, 1703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xptlamu7Y%3D&md5=0c195b49f922f9f7a4cb4923d45791f0CAS |

[46]  T. Asano, Chem. Rev. 1978, 78, 407.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXltVKqt7Y%3D&md5=4fb1ee27364b7770efc693677a013f30CAS |

[47]  H. G. Drickamer, C. W. Frank, Electronic Transitions and the High Pressure Chemistry and Physics of Solids 1973 (Chapman and Hall: London).

[48]  M. D. Cohen, G. M. J. Schmidt, J. Chem. Soc. 1964, 1996.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXktFGhs78%3D&md5=2e8b3484441c8ea3b4110af90d1d9adaCAS |

[49]  V. Schettino, R. Bini, Chem. Soc. Rev. 2007, 36, 869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVShtb0%3D&md5=0fd063916d1da7ce5ff8bab74b006c5bCAS |

[50]  N. S. Isaacs, Liquid Phase High Pressure Chemistry 1981 (John Wiley & Sons: New York, NY).

[51]  C. McKee, M. Mortimer, in Chemical Kinetics and Mechanism: The Molecular World (Eds M. Mortimer, P. G. Taylor) 2002, p. 86 (RSC: Cambridge).

[52]  F. Benito-Lopez, R. Tiggelaar, K. Salbut, J. Huskens, R. Egberink, D. Reinhoudt, H. Gardeniers, W. Verboom, Lab Chip 2007, 7, 1345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOrtL7K&md5=c6cc5e82adabd95a24d0df00d8eed924CAS |

[53]  A. M. Martín Castro, Chem. Rev. 2004, 104, 2939.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  H. Kawanami, M. Sato, M. Chatterjee, N. Otabe, T. Tuji, Y. Ikushima, T. Ishizaka, T. Yokoyama, T. M. Suzuki, Chem. Eng. J. 2011, 167, 572.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFGmu78%3D&md5=8cf070f55ef265b7917af2cc7f8b8690CAS |

[55]  M. Sato, N. Otabe, T. Tuji, K. Matsushima, H. Kawanami, M. Chatterjee, T. Yokoyama, Y. Ikushima, T. M. Suzuki, Green Chem. 2009, 11, 763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvV2qt7w%3D&md5=6398678ad623c8184ed15b756668c07aCAS |

[56]  T. Razzaq, T. N. Glasnov, C. O. Kappe, Chem. Eng. Technol. 2009, 32, 1702.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCrsLzI&md5=85e777d4fead7774283c6fcaabbdfe9aCAS |

[57]  A. Drljaca, C. D. Hubbard, R. van Eldik, T. Asano, M. V. Basilevsky, W. J. le Noble, Chem. Rev. 1998, 98, 2167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtV2isbg%3D&md5=dc50b362308ce41b94320645ae314c19CAS |

[58]  D. Kralisch, I. Streckmann, D. Ott, U. Krtschil, E. Santacesaria, M. Di Serio, V. Russo, L. De Carlo, W. Linhart, E. Christian, B. Cortese, M. H. J. M. de Croon, V. Hessel, ChemSusChem 2012, 5, 300.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyhs7k%3D&md5=68a09ad3012371590958a0917b60c04bCAS |

[59]  A. C. Hordijk, J. J. de Groot, Thermochim. Acta 1986, 101, 45.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXotlynuw%3D%3D&md5=0862ae00941f03bbcc1ed6551905f437CAS |

[60]  T.-C. Ho, Y.-S. Duh, J. R. Chen, Process Saf. Prog. 1998, 17, 259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFKhtA%3D%3D&md5=7327aaa6b71cd946e0fe229d650c1f03CAS |

[61]  Y.-S. Duh, X. H. Wu, C.-S. Kao, Process Saf. Prog. 2008, 27, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFOku7w%3D&md5=3f24ca3d84d64ee2ed4ee30d43bf0301CAS |

[62]  T. Illg, V. Hessel, P. Löb, J. C. Schouten, ChemSusChem 2011, 4, 392.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtV2lt70%3D&md5=5faf5d8eb118c9d079a96d7bb86d0efaCAS |

[63]  L. Fritzsche, A. Knorr, J. Hazard. Mater. 2009, 163, 1403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFait74%3D&md5=e172cf2076fdf5cc98f14e0a64b05ed4CAS |

[64]  R. B. Leng, M. V. M. Emonds, C. T. Hamilton, J. W. Ringer, Org. Process Res. Dev. 2012, 16, 415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsF2gug%3D%3D&md5=b480e4bea1bd07f12de2458213afb89fCAS |

[65]  M. T. Musser, Adipic Acid 2000 (Wiley-VCH: Weinheim).

[66]  J. P. Oppenheim, G. L. Dickerson, Adipic Acid 2003 (Wiley: New York, NY).

[67]  R. A. Reimer, C. S. Slaten, M. Seapan, M. W. Lower, P. E. Tomlinson, Environ. Prog. 1994, 13, 134.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlvVKjsrg%3D&md5=741d405d8bb3d808e60c6d5f7524c108CAS |

[68]  K. Sato, M. Aoki, R. Noyori, Science 1998, 281, 1646.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVSqurs%3D&md5=2d473501c5d6264974480bc4471a9209CAS |

[69]  V. Hessel, I. Vural Gürsel, Q. Wang, T. Noël, J. Lang, Chem. Eng. Technol. 2012, 35, 1184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotF2msrc%3D&md5=5fca6eba179d4f140a606bf04499b0adCAS |

[70]  I. Vural-Gürsel, Q. Wang, T. Noël, V. Hessel, Chem. Eng. Trans. 2012, 29, 565.

[71]  I. Dencic, J. Meuldijk, M. Croon, V. Hessel, J. Flow Chem. 2011, 1, 13.
         | Crossref | GoogleScholarGoogle Scholar |

[72]  H. Röper, H. Koch, Starch-Starke 1988, 40, 453.
         | Crossref | GoogleScholarGoogle Scholar |

[73]  J. H. Vleeming, Deactivation of carbon supported platinum catalyst during carbohydrate oxidation 1997, Ph.D. thesis, Eindhoven University of Technology, The Netherlands.

[74]  P. J. M. Dijkgraaf, Oxidation of glucose to glucaric acid by Pt/C catalyst 1989, Ph.D. thesis, Eindhoven University of Technology, The Netherlands.

[75]  T. Mallat, A. Baiker, Catal. Today 1995, 24, 143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFKhsLo%3D&md5=0c9e2e4b1d4ee7e2eddf178cc4732578CAS |

[76]  S. Ramachandran, P. Fontanille, A. Pandey, C. Larroche, Food Technol. Biotechnol. 2006, 44, 185.
         | 1:CAS:528:DC%2BD28XnsFSqtb8%3D&md5=871667536fc525518b75bcdbe9ebd865CAS |

[77]  V. Misuk, D. Breuch, H. Löwe, Chem. Eng. J. 2011, 173, 536.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCrtLfK&md5=201a1a406f08b59666d0a782f4af1932CAS |

[78]  S.-T. Tu, X. Yu, W. Luan, H. Löwe, Chem. Eng. J. 2010, 163, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOrsL%2FN&md5=c3a8b3fa48f6e328db9c1461684711b3CAS |

[79]  A. Riisager, R. Fehrmann, S. Flicker, R. van Hal, M. Haumann, P. Wasserscheid, Angew. Chem. Int. Ed. 2005, 44, 815.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCnsrk%3D&md5=e47c2d304badef1ae9ada8d63c984632CAS |

[80]  T.-S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, J. Aizenberg, Nature 2011, 477, 443.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WltLnO&md5=d224324bcf0cff4bc93d62e2d68f0751CAS |