Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Introducing the Azlactone Functionality into Polymers through Controlled Radical Polymerization: Strategies and Recent Developments

H. T. Ho A , M. E. Levere A , D. Fournier A B , V. Montembault A , S. Pascual A and L. Fontaine A C
+ Author Affiliations
- Author Affiliations

A Equipe Méthodologie et Synthèse des Polymères, Institut des Molécules et des Matériaux du Mans, IMMM UMR CNRS 6283, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.

B Present address: Unité des Matériaux Et Transformations (UMET, UMR CNRS 8207) Ingénierie des Systèmes Polymères Team, Université Lille 1, 59655 Villeneuve d’Ascq Cedex, France.

C Corresponding author. Email: laurent.fontaine@univ-lemans.fr

Australian Journal of Chemistry 65(8) 970-977 https://doi.org/10.1071/CH12192
Submitted: 11 April 2012  Accepted: 15 May 2012   Published: 2 August 2012

Abstract

Polymers containing the highly reactive azlactone group have emerged as a powerful platform useful in various application areas. This Highlight summarizes recent developments in the field of azlactone-derived polymers made in our group using controlled radical polymerizations (ATRP and RAFT) and ‘click’ chemistry methodology (thiol-Michael addition), leading to well defined reactive polymers.


References

[1]  G. T. Hermanson, Bioconjugates Techniques 2008 (Elsevier Inc.: New-York).

[2]  G. Pasut, F. M. Veronese, Conjugates and Gene Delivery Systems 2006, 192, 95.
         | 1:CAS:528:DC%2BD28Xjt12mtr0%3D&md5=8c7df81b5caafba4871b463ded940279CAS |

[3]  D. Kessler, N. Metz, P. Theato, Macromol. Symp. 2007, 254, 34.
         | 1:CAS:528:DC%2BD2sXhtValur3N&md5=34cbebfddf88f4fffe88db741c416526CAS |

[4]  J.-F. Lutz, H. G. Börner, Prog. Polym. Sci. 2008, 33, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKgurfF&md5=c3e54c459475f2ef924ca6fa04b8622aCAS |

[5]  B. Le Droumaguet, J. Nicolas, Polym. Chem. 2010, 1, 563.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlOhtb7J&md5=500bd40ec3dc06d06ed34da2bcec304eCAS |

[6]  C. Boyer, X. Huang, M. R. Whittaker, V. Bulmus, T. P. Davis, Soft Matter 2011, 7, 1599.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1yrtLk%3D&md5=ffd48d9123fb3e29f07ad11032932a48CAS |

[7]  R. M. Broyer, G. N. Grover, H. D. Maynard, Chem. Commun. 2011, 47, 2212.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1arurg%3D&md5=5eff22d5b77d0f1ffede8ed8e6634947CAS |

[8]  C. Boyer, V. Bulmus, T. P. Davis, V. Ladmiral, J. Liu, S. Perrier, Chem. Rev. 2009, 109, 5402.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCqtbvP&md5=2f4b95b050a6ce8b464972d503a30d01CAS |

[9]  C. J. Hawker, A. W. Bosman, E. Harth, Chem. Rev. 2001, 101, 3661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslaqsrc%3D&md5=f526c4187293bb403eb06f2cb420f495CAS |

[10]  W. A. Braunecker, K. Matyjaszewski, Prog. Polym. Sci. 2007, 32, 93.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFKmt7s%3D&md5=aa982f7314d46dfa06ebff5f5279465cCAS |

[11]  J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 1998, 31, 5559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvF2gs7k%3D&md5=7b317daf025894dcec376159155980ccCAS |

[12]  G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2006, 59, 669.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeqsr%2FM&md5=dbce39d0fb32872e6e9f9a55bde54681CAS |

[13]  G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2009, 62, 1402.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVers7bN&md5=fb2b73394696eb457b81af596f1722b8CAS |

[14]  P. Theato, J. Polym. Sci. A Polym. Chem. 2008, 46, 6677.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Gmt7zE&md5=ae0bac1e44ec2bc884b4aaaff1354b7bCAS |

[15]  (a) H. Li, A. P. Bapat, M. Li, B. S. Sumerlin, Polym. Chem. 2011, 2, 323.For recent examples of the use of NHS esters in bioconjugation, see:
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVyiu74%3D&md5=9280ffe8bfc19e942c149145bc7e601bCAS |
      (b) M. Chenal, C. Boursier, Y. Guillaneuf, M. Taverna, P. Couvreur, J. Nicolas, Polym. Chem. 2011, 2, 1523.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Kitano, H. Suzuki, K. Matsuura, K. Ohno, Langmuir 2010, 26, 6767.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Z. Zarafshani, T. Obata, J.-F. Lutz, Biomacromolecules 2010, 11, 2130.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) L. McDowall, G. Chen, M. H. Stenzel, Macromol. Rapid Commun. 2008, 29, 1666.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) S. Debasis, S. McRae, B. Cooper, Y. Hu, T. Emrick, J. Pratt, S. A. Charles, Biomacromolecules 2008, 9, 2891.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) G. Chen, P. L. Felgner, Z. Guan, Biomacromolecules 2008, 9, 1745.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) K. A. Aamer, G. N. Tew, J. Polym. Sci. A Polym. Chem. 2007, 45, 5618.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) M. Bathfield, F. D’Agosto, R. Spitz, M. T. Charreyre, T. Delair, J. Am. Chem. Soc. 2006, 128, 2546.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) G. B. H. Chua, P. J. Roth, H. T. T. Duong, T. P. Davis, A. B. Lowe, Macromolecules 2012, 45, 1362.For recent examples of the use of PFP esters in bioconjugation, see:
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFyltL4%3D&md5=ce9a3de7158a37118afd1d6f6cae66a4CAS |
      (b) H. T. T. Duong, C. P. Marquis, M. R. Whittaker, T. P. Davis, C. Boyer, Macromolecules 2011, 44, 8008.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. Boyer, M. R. Whittaker, T. P. Davis, J. Polym. Sci. A Polym. Chem. 2011, 49, 5245.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) N. K. Singha, M. I. Gibson, B. P. Koiry, M. Danial, H.-A. Klok, Biomacromolecules 2011, 12, 2908.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) P. J. Roth, F. D. Jochum, R. Zentel, P. Theato, Biomacromolecules 2010, 11, 238.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) K. Wiss, P. Theato, J. Polym. Sci. A Polym. Chem. 2010, 48, 4758.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) P. J. Roth, M. Haase, T. Bache, P. Theato, R. Zentel, Macromolecules 2010, 43, 895.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) K. T. Wiss, O. D. Krishna, P. J. Roth, K. L. Kiick, P. Theato, Macromolecules 2009, 42, 3860.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) C. Boyer, T. P. Davis, Chem. Commun. (Camb.) 2009, 6029.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  S. M. Heilmann, J. K. Rasmussen, L. R. Krepski, J. Polym. Sci. A Polym. Chem. 2001, 39, 3655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVWlur0%3D&md5=47f9c03279aa16e3a5ecc6e31020941fCAS |

[18]  J. K. Rasmussen, S. M. Heilmann, L. R. Krepski, K. M. Jensen, J. Mickelson, K. Z. Johnson, P. L. Coleman, D. S. Milbrath, M. M. Walker, React. Polym. 1992, 16, 199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisFKmtL0%3D&md5=04ae00a2edd4b17cb0271b3c4381d626CAS |

[19]  H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVOis78%3D&md5=af962a1dfdc14748785758477eb28f57CAS |

[20]  C. Barner-Kowollik, F. E. Du Prez, P. Espeel, C. J. Hawker, T. Junkers, H. Schlaad, W. Van Camp, Angew. Chem. Int. Ed. 2011, 50, 60.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1alu73E&md5=cfb3de397e92dc873ce42d6384f43ff5CAS |

[21]  A. D. Gough, E. Khosdel, R. Polywka, US 5 552 332 1995.

[22]  A. Joiner, E. Khoshdel, R. Polywka, EP 0 792 141 B1 1995.

[23]  M. E. Buck, D. M. Lynn, Polym. Chem. 2012, 3, 66.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGjsbrK&md5=baa998cf0c00081d310746c6fb05c37fCAS |

[24]  M. E. Levere, H. T. Ho, S. Pascual, L. Fontaine, Polym. Chem. 2011, 2, 2878.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2qurfE&md5=d8d5db860fe0d2093cb8155aa9282fd5CAS |

[25]  J. K. Rasmussen, S. M. Heilmann, L. R. Krepski, in Encyclopedia of Polymer Science and Engineering, 2nd Ed., 1988, Vol. 11, p 558 (Eds H. F. Mark, N. Bikales, C. G. Overberger, G. Menges) (Wiley-Interscience: New York).

[26]  B. Guichard, C. Noel, D. Reyx, M. Thomas, S. Chevalier, J.-P. Senet, Macromol. Chem. Phys. 1998, 199, 1657.
         | 1:CAS:528:DyaK1cXls1CnsL4%3D&md5=ab2c6a7804981de5ad287a141ec30734CAS |

[27]  L. Fontaine, T. Lemêle, J.-C. Brosse, G. Sennyey, J.-P. Senet, D. Wattiez, Macromol. Chem. Phys. 2002, 203, 1377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVSmtLo%3D&md5=a3aea29f526a18e67bed25b88e5bb4bcCAS |

[28]  A. F. Jacobine, D. M. Glaser, P. J. Grabek, D. Mancini, M. Masterson, S. T. Nakos, M. A. Rakas, J. G. Woods, J. Appl. Polym. Sci. 1992, 45, 471.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkslSktLg%3D&md5=a4d67cc9da48eea13bcc33e436002272CAS |

[29]  A. F. Jacobine, S. T. Nakos, PCT Int. Appl. WO 9 312 098 1993.

[30]  V. Lapinte, L. Fontaine, V. Montembault, I. Campistron, D. Reyx, J. Mol. Catal. Chem. 2002, 190, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xosl2isrs%3D&md5=6f92755f89f215a9a745e062bbf5197aCAS |

[31]  V. Lapinte, J.-C. Brosse, L. Fontaine, Macromol. Chem. Phys. 2004, 205, 824.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFKjtr4%3D&md5=6aeb944ce6aa777d836daa9002e7f5ebCAS |

[32]  R. Saint-Loup, J.-J. Robin, B. Boutevin, Macromol. Chem. Phys. 2002, 203, 199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Wiu7s%3D&md5=202c53e4cc06273f2cde2f828464013eCAS |

[33]  H. T. Ho, M. E. Levere, J.-C. Soutif, V. Montembault, S. Pascual, L. Fontaine, Polym. Chem. 2011, 2, 1258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1Kgsrc%3D&md5=d623c92e011bcec461ea6a3ee4a3b792CAS |

[34]  A. Guyomard, D. Fournier, S. Pascual, L. Fontaine, J.-F. Bardeau, Eur. Polym. J. 2004, 40, 2343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt12ku74%3D&md5=0c1b80ff2675a2703455c3cc637b4571CAS |

[35]  C. Lucchesi, S. Pascual, A. Jouanneaux, G. Dujardin, L. Fontaine, J. Polym. Sci. A Polym. Chem. 2007, 45, 3677.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFers7Y%3D&md5=97999f3bd037c9689ec8f744f6c9fdf4CAS |

[36]  C. Lucchesi, S. Pascual, G. Dujardin, L. Fontaine, React. Funct. Polym. 2008, 68, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVehs73N&md5=ff03decce806547e92b7b772171f1af3CAS |

[37]  C. Lucchesi, S. Pascual, L. Fontaine, A. Arboré, C. Maignan, G. Dujardin, Carbohydr. Res. 2010, 345, 844.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFyksLw%3D&md5=e2be39d8720c538d03a42047313b7a6aCAS |

[38]  A. Laquièvre, N. S. Allaway, J. Lyskawa, P. Woisel, J.-M. Lefebvre, D. Fournier, Macromol. Rapid Commun. 2012, 33, 848.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  D. C. Tully, M. J. Roberts, B. H. Geierstanger, R. B. Grubbs, Macromolecules 2003, 36, 4302.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFOhsLY%3D&md5=5818401bf64bd734f9bc9ab880e18b54CAS |

[40]  D. Fournier, S. Pascual, L. Fontaine, Macromolecules 2004, 37, 330.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1Om&md5=524a7822cd43e79b7528c56e20a78aa0CAS |

[41]  D. Fournier, S. Pascual, V. Montembault, D. M. Haddleton, L. Fontaine, J. Comb. Chem. 2006, 8, 522.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFKltLg%3D&md5=dc8113123e7273925e31160ac596a50aCAS |

[42]  M. Ejaz, S. Yamamoto, K. Ohno, Y. Tsujii, T. Fukuda, Macromolecules 1998, 31, 5934.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvF2nsr8%3D&md5=bc432128053364f48641f7b62472fc07CAS |

[43]  K. Matyjaszewski, P. J. Miller, N. Shukla, B. Immaraporn, A. Gelman, B. B. Luokala, T. M. Siclovan, G. Kickelbick, T. Vallant, H. Hoffmann, T. Pakula, Macromolecules 1999, 32, 8716.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVSmtb4%3D&md5=5017159f11f5b1edb3e5bc9722e8bae6CAS |

[44]  D. Fournier, S. Pascual, V. Montembault, L. Fontaine, J. Polym. Sci. A Polym. Chem. 2006, 44, 5316.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFensrg%3D&md5=64e82094599860080ac4e603e72605e7CAS |

[45]  Y. Prai-In, K. Tankanya, B. Rutnakornpituk, U. Wichai, V. Montembault, S. Pascual, L. Fontaine, M. Rutnakornpituk, Polymer (Guildf.) 2012, 53, 113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OitLzK&md5=4f533ef3c2bb54520b49577e317c8828CAS |

[46]  M. Teodorescu, K. Matyjaszewski, Macromolecules 1999, 32, 4826.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFektLc%3D&md5=03b05b9f72a82333d4b48c7d48185905CAS |

[47]  C. M. Schilli, A. H. E. Muller, E. Rizzardo, S. H. Thang, Y. K. Chong, in Advances in Controlled/Living Radical Polymerization, 2003, Vol. 854, pp. 603–618 (Ed. K. Matyjaszewski) (American Chemical Society: Washington).

[48]  B. S. Lokitz, J. M. Messman, J. P. Hinestrosa, J. Alonzo, R. Verduzco, R. H. Brown, M. Osa, J. F. Ankner, S. M. Kilbey, Macromolecules 2009, 42, 9018.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCkurrN&md5=2088ac21ad50f993eb7e70c4988901baCAS |

[49]  S. Pascual, T. Blin, P. J. Saikia, M. Thomas, P. Gosselin, L. Fontaine, J. Polym. Sci. A Polym. Chem. 2010, 48, 5053.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKjsrfJ&md5=49bd0d71f72d6972665c17b4d960b941CAS |

[50]  S. Pascual, M. J. Monteiro, Eur. Polym. J. 2009, 45, 2513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSnurfI&md5=c28ec4649a67dca95ee0c055ba3a96f8CAS |

[51]  A. B. Lowe, Polym. Chem. 2010, 1, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1eltbo%3D&md5=95f6ca7bfd97dd22fba6f8cfa51ba76eCAS |

[52]  G.-Z. Li, R. K. Randev, A. H. Soeriyadi, G. Rees, C. Boyer, Z. Tong, T. P. Davis, C. R. Becer, D. M. Haddleton, Polym. Chem. 2010, 1, 1196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2msLrO&md5=d809707c783f07ad2b4aecc834b609f4CAS |

[53]  A. Dondoni, Angew. Chem. Int. Ed. 2008, 47, 8995.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCnsrfO&md5=a6df1b7989ccddb7612cd7a19ca8c714CAS |

[54]  H. T. Ho, F. Leroux, S. Pascual, V. Montembault, L. Fontaine, Macromol. Rapid Commun. 2012. 10.1002/MARC.201200367