Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

The History and Development of Radiation Chemistry

Ronald Cooper
+ Author Affiliations
- Author Affiliations

School of Chemistry, University of Melbourne, Parkville, Vic. 3010, Australia. Email: ronaldc@unimelb.edu.au

Australian Journal of Chemistry 64(7) 864-868 https://doi.org/10.1071/CH11142
Submitted: 12 April 2011  Accepted: 9 May 2011   Published: 19 July 2011

Abstract

Stemming from the discovery and isolation of radioactive elements by the Curies came observations of chemical and physical changes produced by ‘emanations’. From ~1900 AD, observations were sporadic and spread across a range of chemical systems. Several conflicting results from irradiated water were reported – one recording no decomposition, whereas another study observed hydrogen and hydrogen peroxide formation. The field progressed slowly while the only practical source of radiation was X-rays. After the mid-1940s, the isotope output from nuclear reactors gave chemists high-activity radiation sources with which to conduct experiments. Particle accelerators were utilized and led to the pulsed radiolysis technique, which unlocked the door to the study of ultrafast solution reactions of free radicals and excited states. The radiation chemistry of water is now a qualitative and quantitative basis for the initiation and study of a wide range of chemical and physical processes. Polymeric systems, solid-state dosimeters, and gaseous plasmas are active areas of research. The radiological use of radiation has an active radiobiology field developing new biochemical processes involving DNA stability.


References

[1]  N. A. Orlov, Zh. Russ. Fiz. Khim. Chast. Fiz. 1904, 36, 41.

[2]  K. V. Kharichkov, Zh. Russ. Fiz. Khim. Chast. Fiz. 1910, 42, 902.

[3]  W. J. Ramsay, Chem. Soc. 1907, 91, 931.
         | 1:CAS:528:DyaD2sXpt1Gl&md5=9312f192b616722d0287618a40932e6cCAS |

[4]  W. Duane, O. Scheuer, Le Radium 1913, 10, 33.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  H. Fricke, S. Morse, Philos. Mag. 1929, 7, 129.

[6]  J. Weiss, Nature 1944, 153, 748.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2cXjvVGntw%3D%3D&md5=511edbaa75b45249d5b3ea04e1517f3bCAS |

[7]  M. I. Burton, Phys. Colloid Chem. 1947, 51, 611.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2sXhvVertQ%3D%3D&md5=12f3394c8110543f77511c4c54619b12CAS |

[8]  J. Weiss, E. Hayon, Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy Geneva 1958, Vol. 29, p. 80 (UNESCO: Geneva).

[9]  G. J. Czapski, H. A. Schwartz, Phys. Chem. 1962, 66, 471.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  F. S. Dainton, E. Collinson, Proc. Chem. Soc. 1962, 140.

[11]  R. L. Platzman. Basic Mechanisms in Radiobiology NRC Publication no. 305 1953 (Eds J. L. Magee, R. L. Platzman) (National Research Council: Washington, DC).

[12]  R. L. McCarthy, A. McLachlan, Trans. Far. Soc 1960, 56, 1187.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXis1SntQ%3D%3D&md5=251f9a1f2841d75cd8ebab7206f98161CAS |

[13]  M. S. Matheson, L. Dorfman, J. Chem. Phys. 1960, 32, 1870.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXmtVWg&md5=0d7e1752ea892e7f0d1390dbf5d6d166CAS |

[14]  E. J. Hart, J. J. Boag, Am. Chem. Soc. 1962, 84, 4090.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXmsFCl&md5=7ed31e3b87951c5a463256f1d0f58f3aCAS |

[15]  Handbook of Radiation Chemistry 1991, pp. 340–370 (Eds Y. Tabata, Y. Ito, S. Tagawa) (CRC Press: Boca Raton, FL).

[16]  Pulse Radiolysis of Irradiated Systems 1991 (Ed. Y. Tabata) (CRC Press: Boca Raton, FL).

[17]  E. B. Newton, U.S. Patent 1 906 402 1929.

[18]  A. Chapiro, C. Cousin, Y. Landler, M. Magat, Rec. Trav. Chim. 1949, 68, 1037.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3cXjtFyguw%3D%3D&md5=7b4eaaf9d0b130e9380d31333895c388CAS |

[19]  V. L. Talrose, A. K. Lyubimova, Dokl. Akad. Nauk SSSR 1952, 86, 909.

[20]  W. H. T. Davidson, S. H. Pinner, R. Worral, Chem. Ind. 1957, 1274.

[21]  A. Charlesby, Proc. R. Soc. Lond. 1952, 215, 187.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXivVSntw%3D%3D&md5=1ec68ef2ca060f7cb3ad2f5e28fe3d35CAS |

[22]  Early Developments in Radiation Chemistry 1989 (Ed. J. Kroh) (Royal Society of Chemistry: Cambridge, UK).

[23]  Radiation Chemistry: Present Status and Future Trends 2001 (Eds C. D. Jonah, B. S. M. Rao) (Elsevier: Amsterdam).

[24]  S. Gordon, in Early Developments in Radiation Chemistry 1989, Ch. 11 (Ed. J. Kroh) (Royal Society of Chemistry: Cambridge, UK).

[25]  L.A. Taub, in Radiation Chemistry: Present Status and Future Trends 2001, Ch. 25, pp. 705–728 (Eds C. D. Jonah, B. S. M. Rao) (Elsevier: Amsterdam).