Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW (Open Access)

Overview of the synthetic approaches to lysergic acid as a precursor to the psychedelic LSD

Michael J. Nutt A * , Nick Woolf B and Scott G. Stewart https://orcid.org/0000-0002-7537-247X A *
+ Author Affiliations
- Author Affiliations

A School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia.

B Woke Pharmaceuticals, Suite 301, 10 Bridge Street, Sydney, NSW 2000 Australia.


Handling Editor: John Wade

Australian Journal of Chemistry 76(5) 279-287 https://doi.org/10.1071/CH23055
Submitted: 13 March 2023  Accepted: 24 May 2023   Published: 7 July 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution 4.0 International License (CC BY)

Abstract

In this short primer we will discuss the total synthesis of lysergic acid, an important precursor to both lysergic acid diethylamide (LSD) and its derivatives. Lysergic acid is also noted as a precursor for many drugs targeting the serotonin receptor family of GPCRs, including multiple known hallucinogens. More recently, reinvigorated interest in the therapeutic potential of psychedelics from academic and commercial sectors has placed a renewed importance on practical, scalable means of accessing this complex alkaloid scaffold.

Keywords: amination, cross‐coupling, ergoline, ergot fungus, organic chemical synthesis, total synthesis, lysergic acid, lysergic acid diethylamide, psychedelic.


References

[1]  C Savage, Variations in ego feeling induced by D-lysergic acid diethylamide (LSD-25). Psychoanal Rev 1955, 42, 1.

[2]  ME Liechti, Modern clinical research on LSD. Neuropsychopharmacology 2017, 42, 2114.
         | Modern clinical research on LSD.Crossref | GoogleScholarGoogle Scholar |

[3]  RL Carhart-Harris, S Muthukumaraswamy, L Roseman, M Kaelen, W Droog, K Murphy, E Tagliazucchi, EE Schenberg, T Nest, C Orban, R Leech, LT Williams, TM Williams, M Bolstridge, B Sessa, J McGonigle, MI Sereno, D Nichols, PJ Hellyer, P Hobden, J Evans, KD Singh, RG Wise, HV Curran, A Feilding, DJ Nutt, Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc Natl Acad Sci USA 2016, 113, 4853.
         | Neural correlates of the LSD experience revealed by multimodal neuroimaging.Crossref | GoogleScholarGoogle Scholar |

[4]  Hofmann A. LSD, my problem child. New York, NY, USA: McGraw-Hill; 1980.

[5]  Nichols DE. Chemistry and structure–activity relationships of psychedelics. In: Halberstadt AL, Vollenweider FX, Nichols DE, editors. Behavioral Neurobiology of Psychedelic Drugs. Current Topics in Behavioral Neurosciences. Vol. 36. Springer; 2017.

[6]  Shulgin A, Shulgin A. TiHKAL: The Continuation. Berkeley, CA, USA: Transform Press; 1997.

[7]  D Nutt, Psychedelic drugs—a new era in psychiatry? Dialogues Clin Neurosci 2019, 21, 139.
         | Psychedelic drugs—a new era in psychiatry?Crossref | GoogleScholarGoogle Scholar |

[8]  (a) Rebek NR, Wipf P. Biosynthesis, total synthesis, and biological profiles of Ergot alkaloids. Alkaloids Chem Biol 2021; 85: 1-112. | Crossref |
      (b) Jastrzębski MK, Kaczor AA, Wróbel TM. Methods of lysergic acid synthesis—the key Ergot alkaloid. Molecules 2022; 27: 7322. | Crossref |

[9]  (a) Mann J. Turn on and tune in: psychedelics, narcotics and euphoriants, 1st edn. Royal Society of Chemistry; 2009.
      (b) Kornfeld EC, Fornefeld EJ, Kline GB, Mann MJ, Morrison DE, Jones RG, Woodward RB. The total synthesis of lysergic acid. J Am Chem Soc 1956; 78: 3087–3114. | Crossref |
      (c) Kornfeld EC, Fornefeld EJ, Kline GB, Mann MJ, Jones RG, Woodward RB. The total synthesis of lysergic acid and engrovine. J Am Chem Soc 1954; 76: 5256–5257. | Crossref |

[10]  FC Uhle, The synthesis of 5-keto-1,3,4,5-tetrahydrobenz[cd]indole. A synthesis of 4-substituted indoles. J Am Chem Soc 1949, 71, 761.
         | The synthesis of 5-keto-1,3,4,5-tetrahydrobenz[cd]indole. A synthesis of 4-substituted indoles.Crossref | GoogleScholarGoogle Scholar |

[11]  J Rebek, DF Tai, A new synthesis of lysergic acid. Tetrahedron Lett 1983, 24, 859.
         | A new synthesis of lysergic acid.Crossref | GoogleScholarGoogle Scholar |

[12]  J Rebek, DF Tai, YK Shue, Synthesis of Ergot alkaloids from tryptophan. J Am Chem Soc 1984, 106, 1813.
         | Synthesis of Ergot alkaloids from tryptophan.Crossref | GoogleScholarGoogle Scholar |

[13]  T Kiguchi, C Hashimoto, T Naito, I Ninomiya, A new synthesis of (±)-lysergic acid. Heterocycles 1982, 19, 2279.
         | A new synthesis of (±)-lysergic acid.Crossref | GoogleScholarGoogle Scholar |

[14]  I Moldvai, E Temesvári-Major, M Incze, É Szentirmay, E Gács-Baitz, C Szántay, Enantioefficient synthesis of α-ergocryptine: first direct synthesis of (+)-lysergic acid. J Org Chem 2004, 69, 5993.
         | Enantioefficient synthesis of α-ergocryptine: first direct synthesis of (+)-lysergic acid.Crossref | GoogleScholarGoogle Scholar |

[15]  R Ramage, VW Armstrong, S Coulton, A new synthetic route to (±)-lysergic acid. Tetrahedron 1981, 37, 157.
         | A new synthetic route to (±)-lysergic acid.Crossref | GoogleScholarGoogle Scholar |

[16]  T Kurihara, T Terada, R Yoneda, A new synthesis of (±)-lysergic acid. Chem Pharm Bull 1986, 34, 442.
         | A new synthesis of (±)-lysergic acid.Crossref | GoogleScholarGoogle Scholar |

[17]  S Cacchi, P Giuseppe Ciattini, E Morera, G Ortar, A concise, palladium-catalyzed approach to (±)-lysergic acid. Tetrahedron Lett 1988, 29, 3117.
         | A concise, palladium-catalyzed approach to (±)-lysergic acid.Crossref | GoogleScholarGoogle Scholar |

[18]  W Oppolzer, E Francotte, K Bättig, Total synthesis of (±)-lysergic acid by an intramolecular imino-Diels–Alder reaction. preliminary communication. Helv Chim Acta 1981, 64, 478.
         | Total synthesis of (±)-lysergic acid by an intramolecular imino-Diels–Alder reaction. preliminary communication.Crossref | GoogleScholarGoogle Scholar |

[19]  U Rathnayake, P Garner, Asymmetric synthesis of lysergic acid via an intramolecular (3+2) dipolar cycloaddition/ring-expansion sequence. Org Lett 2021, 23, 6756.
         | Asymmetric synthesis of lysergic acid via an intramolecular (3+2) dipolar cycloaddition/ring-expansion sequence.Crossref | GoogleScholarGoogle Scholar |

[20]  S Inuki, S Oishi, N Fujii, H Ohno, Total synthesis of (±)-lysergic acid, lysergol, and isolysergol by palladium-catalyzed domino cyclization of amino allenes bearing a bromoindolyl group. Org Lett 2008, 10, 5239.
         | Total synthesis of (±)-lysergic acid, lysergol, and isolysergol by palladium-catalyzed domino cyclization of amino allenes bearing a bromoindolyl group.Crossref | GoogleScholarGoogle Scholar |

[21]  A Iwata, S Inuki, S Oishi, N Fujii, H Ohno, Formal total synthesis of (+)-lysergic acid via zinc(II)-mediated regioselective ring-opening reduction of 2-alkynyl-3-indolyloxirane. J Org Chem 2011, 76, 5506.
         | Formal total synthesis of (+)-lysergic acid via zinc(II)-mediated regioselective ring-opening reduction of 2-alkynyl-3-indolyloxirane.Crossref | GoogleScholarGoogle Scholar |

[22]  S Inuki, A Iwata, S Oishi, N Fujii, H Ohno, Enantioselective total synthesis of (+)-lysergic acid, (+)-lysergol, and (+)-isolysergol by palladium-catalyzed domino cyclization of allenes bearing amino and bromoindolyl groups. J Org Chem 2011, 76, 2072.
         | Enantioselective total synthesis of (+)-lysergic acid, (+)-lysergol, and (+)-isolysergol by palladium-catalyzed domino cyclization of allenes bearing amino and bromoindolyl groups.Crossref | GoogleScholarGoogle Scholar |

[23]  Q Liu, Y Jia, Total synthesis of (+)-lysergic acid. Org Lett 2011, 13, 4810.
         | Total synthesis of (+)-lysergic acid.Crossref | GoogleScholarGoogle Scholar |

[24]  Q Liu, YA Zhang, P Xu, Y Jia, Total synthesis of (+)-lysergic acid. J Org Chem 2013, 78, 10885.
         | Total synthesis of (+)-lysergic acid.Crossref | GoogleScholarGoogle Scholar |

[25]  S Umezaki, S Yokoshima, T Fukuyama, Total synthesis of lysergic acid. Org Lett 2013, 15, 4230.
         | Total synthesis of lysergic acid.Crossref | GoogleScholarGoogle Scholar |

[26]  R Kanno, S Yokoshima, M Kanai, T Fukuyama, Total synthesis of (+)-lysergic acid. J Antibiot 2018, 71, 240.
         | Total synthesis of (+)-lysergic acid.Crossref | GoogleScholarGoogle Scholar |

[27]  S Bhunia, S Chaudhuri, A Bisai, Total syntheses of pyroclavine, festuclavine, lysergol, and isolysergol via a catalytic asymmetric nitro-Michael reaction. Chem Eur J 2017, 23, 11234.
         | Total syntheses of pyroclavine, festuclavine, lysergol, and isolysergol via a catalytic asymmetric nitro-Michael reaction.Crossref | GoogleScholarGoogle Scholar |

[28]  JA Deck, SF Martin, Enantioselective synthesis of (+)-isolysergol via ring-closing metathesis. Org Lett 2010, 12, 2610.
         | Enantioselective synthesis of (+)-isolysergol via ring-closing metathesis.Crossref | GoogleScholarGoogle Scholar |

[29]  DE Cladingboel, PJ Parsons, Synthesis of lysergic acid derivatives by triple radical cyclisation. J Chem Soc Chem Commun 1990, 1990, 1543.
         | Synthesis of lysergic acid derivatives by triple radical cyclisation.Crossref | GoogleScholarGoogle Scholar |

[30]  Y Özlü, DE Cladingboel, PJ Parsons, Tandem radical cyclisations: synthesis of lysergic acid derivatives. Tetrahedron 1994, 50, 2183.
         | Tandem radical cyclisations: synthesis of lysergic acid derivatives.Crossref | GoogleScholarGoogle Scholar |

[31]  H Yuan, Z Guo, T Luo, Synthesis of (+)-lysergol and its analogues to assess serotonin receptor activity. Org Lett 2017, 19, 624.
         | Synthesis of (+)-lysergol and its analogues to assess serotonin receptor activity.Crossref | GoogleScholarGoogle Scholar |

[32]  T Miura, Y Funakoshi, M Murakami, Intramolecular dearomatizing [3 + 2] annulation of α-imino carbenoids with aryl rings furnishing 3,4-fused indole skeletons. J Am Chem Soc 2014, 136, 2272.
         | Intramolecular dearomatizing [3 + 2] annulation of α-imino carbenoids with aryl rings furnishing 3,4-fused indole skeletons.Crossref | GoogleScholarGoogle Scholar |

[33]  M Julia, F Le Goffic, J Igolen, M Baillarge, Une nouvelle synthese de l’acide lysergique. Tetrahedron Lett 1969, 10, 1569.[In French]
         | Une nouvelle synthese de l’acide lysergique.Crossref | GoogleScholarGoogle Scholar |

[34]  JB Hendrickson, J Wang, A new synthesis of lysergic acid. Org Lett 2004, 6, 3.
         | A new synthesis of lysergic acid.Crossref | GoogleScholarGoogle Scholar |

[35]  M Bekkam, H Mo, DE Nichols, A reported “new synthesis of lysergic acid” yields only the derailment product: methyl 5-methoxy-4,5-dihydroindolo[4,3-f,g]quinoline-9-carboxylate. Org Lett 2012, 14, 296.
         | A reported “new synthesis of lysergic acid” yields only the derailment product: methyl 5-methoxy-4,5-dihydroindolo[4,3-f,g]quinoline-9-carboxylate.Crossref | GoogleScholarGoogle Scholar |

[36]  T Inoue, S Yokoshima, T Fukuyama, Synthetic studies toward (+)-lysergic acid: construction of the tetracyclic ergoline skeleton. Heterocycles 2009, 79, 373.
         | Synthetic studies toward (+)-lysergic acid: construction of the tetracyclic ergoline skeleton.Crossref | GoogleScholarGoogle Scholar |

[37]  T Kurokawa, M Isomura, H Tokuyama, T Fukuyama, Synthesis of lysergic acid methyl ester via the double cyclization strategy. Synlett 2009, 2009, 775.
         | Synthesis of lysergic acid methyl ester via the double cyclization strategy.Crossref | GoogleScholarGoogle Scholar |

[38]  NR Tasker, P Wipf, Short synthesis of Ergot alkaloids and evaluation of the 5-HT1/2 receptor selectivity of lysergols and isolysergols. Org Lett 2022, 24, 7255.
         | Short synthesis of Ergot alkaloids and evaluation of the 5-HT1/2 receptor selectivity of lysergols and isolysergols.Crossref | GoogleScholarGoogle Scholar |

[39]  BJ Knight, RC Harbit, JM Smith, Six-Step Synthesis of (±)-Lysergic Acid. J Org Chem 2023, 88, 2158.
         | Six-Step Synthesis of (±)-Lysergic Acid.Crossref | GoogleScholarGoogle Scholar |

[40]  K Kim, T Che, O Panova, JF DiBerto, J Lyu, BE Krumm, D Wacker, MJ Robertson, AB Seven, DE Nichols, BK Shoichet, G Skiniotis, BL Roth, Structure of a hallucinogen-activated Gq-coupled 5-HT2A serotonin receptor. Cell 2020, 182, 1574.
         | Structure of a hallucinogen-activated Gq-coupled 5-HT2A serotonin receptor.Crossref | GoogleScholarGoogle Scholar |

[41]  D Wacker, S Wang, JD McCorvy, RM Betz, AJ Venkatakrishnan, A Levit, K Lansu, ZL Schools, T Che, DE Nichols, BK Shoichet, RO Dror, BL Roth, Crystal structure of an LSD-bound human serotonin receptor. Cell 2017, 168, 377.
         | Crystal structure of an LSD-bound human serotonin receptor.Crossref | GoogleScholarGoogle Scholar |