Acid form of Trofimenko’s scorpionates, H(TpR,R′); comments on synthesis and solid-state structure of H(TptBu,Me)†
Kuburat O. Saliu A , Jianhua Cheng A B , Robert McDonald A and Josef Takats A *A Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
B Present address: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, China.
Australian Journal of Chemistry 75(9) 566-570 https://doi.org/10.1071/CH21305
Submitted: 26 November 2021 Accepted: 17 December 2021 Published: 18 February 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.
Abstract
We report a re-examination of Trofimenko’s original protocol for the preparation of the acid form of his hydrotris(pyrazolyl)borates, H(TpR,R′), by the treatment of M(TpR,R′) with glacial acetic acid. It is concluded that the protocol is effective as long as the 3-substituent of the pyrazolyl moiety is sufficiently bulky to provide steric protection to the acidic N–H proton. The solid-state structure of H(TptBu,Me), the acid form of the popular TptBu,Me ligand is also presented.
Keywords: acid form tris(pyrazolyl)borate, ligand synthesis, protonolysis, scorpionates, structure, tripod ligand, zwitterion.
References
[1] S Trofimenko, J Am Chem Soc 1966, 88, 1842.| Crossref | GoogleScholarGoogle Scholar |
[2] (a) Trofimenko S. Scorpionates: The Coordination Chemistry of Poly-pyrazolylborate Ligands. London: Imperial College Press; 1999.
(b) Pettinari C. Scorpionate II: Chelating Borate Ligands. London: Imperial College Press; 2008.
[3] (a) A Looney, G Parkin, Polyhedron 1990, 9, 265.
| Crossref | GoogleScholarGoogle Scholar |
(b) R Han, G Parkin, Organometallics 1991, 10, 1010.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) J Cheng, K Saliu, GY Kiel, MJ Ferguson, R McDonald, J Takats, Angew Chem Int Ed 2008, 47, 4910.
| Crossref | GoogleScholarGoogle Scholar |
(b) J Cheng, MJ Ferguson, J Takats, J Am Chem Soc 2010, 132, 2.
| Crossref | GoogleScholarGoogle Scholar |
[5] J Blackwell, C Lehr, Y Sun, WE Piers, SD Pearce-Batchilder, MJ Zaworotko, VG Young Jr., Can J Chem 1997, 75, 702.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) M Zimmermann, J Takats, G Kiel, KW Tornroos, R Anwander, Chem Commun 2008, 612.
| Crossref | GoogleScholarGoogle Scholar |
(b) MK Katzenmayer, MB Wolf, A Mortis, C Maichle-Mossmer, R Anwander, Chem Commun 2021, 57, 243.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) X Shi, C Hou, C Zhou, Y Song, J Cheng, Angew Chem Int Ed 2017, 56, 16650.
| Crossref | GoogleScholarGoogle Scholar |
(b) X Shi, C Hou, L Zhao, P Deng, J Cheng, Chem Commun 2020, 56, 5162.
| Crossref | GoogleScholarGoogle Scholar |
[8] S Trofimenko, J Am Chem Soc 1967, 89, 3170.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) RA Kresinski, CJ Jones, JA McCleverty, Polyhedron 1990, 9, 2185.
| Crossref | GoogleScholarGoogle Scholar |
(b) RA Kresinski, TA Hamor, CJ Jones, JA McCleverty, J Chem Soc, Dalton Trans 1991, 603.
| Crossref | GoogleScholarGoogle Scholar |
[10] RA Kresinski, J Chem Soc Dalton Trans 1999, 401.
| Crossref | GoogleScholarGoogle Scholar |
[11] JA Thomas, A Davison, Inorg Chim Acta 1991, 190, 231.
| Crossref | GoogleScholarGoogle Scholar |
[12] JL Kisko, T Hascall, C Kimblin, G Parkin, J Chem Soc, Dalton Trans 1999, 1929.
| Crossref | GoogleScholarGoogle Scholar |
[13] C Lopez, RM Claramunt, C Foces-Foces, FH Cano, J Elguero, Rev Roum Chim 1994, 39, 795.
[14] DC Bradley, MB Hursthouse, J Newton, NPC Walker, J Chem Soc, Chem Commun 1984, 188.
| Crossref | GoogleScholarGoogle Scholar |
[15] JA Pople, Mol Phys 1958, 1, 168.
| Crossref | GoogleScholarGoogle Scholar |
[16] SR Neal, A Ellern, AD Sadow, J Organomet Chem 2011, 696, 228.
| Crossref | GoogleScholarGoogle Scholar |
[17] S Trofimenko, JC Calabrese, JK Kochi, S Wolowiec, FB Hulsbergen, J Reedijk, Inorg Chem 1992, 31, 3943.
| Crossref | GoogleScholarGoogle Scholar |