Supplementary Material

(Benzene-1,2,4,5-tetrayl)tetrakis(3-(1-carboxylatomethylpyridinium)), a novel uranyl-complexing tetrazwitterion

Young Hoon Lee^A, Sotaro Kusumoto^B, Youssef Atoini^C, Shinya Hayami^D, Yang Kim^{D,*}, Jack Harrowfield^{E,*} and Pierre Thuéry^{F,*}

^ADepartment of Chemistry & Energy Harvest Storage Research Centre (EHSRC), University of Ulsan, 12 Tekeunosaneop-ro 55beon-gil, Nam-gu, Ulsan 44776, Republic of Korea

^BDepartment of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221- 8686, Japan

^CTechnical University of Munich, Campus Straubing, Schulgasse 22, D-94315 Straubing, Germany

^DDepartment of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

^EUniversité de Strasbourg, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, F-67083 Strasbourg, France

^FUniversité Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre national de la recherche scientifique (CNRS), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (NIMBE), F-91191 Gif-sur-Yvette, France

*Correspondence to: Email: <u>ykim@kumamoto-u.ac.jp</u>, <u>harrowfield@unistra.fr</u>, <u>pierre.thuery@cea.fr</u>

Reagents and procedures

All chemicals were purchased from Aldrich Chemical Co. and used without further purification. Deuterated solvents from Eurisotop were used. Proton NMR spectra were recorded on a Bruker AVANCE III HD 400 spectrometer at ambient temperature. Chemical shifts are given in parts per million, and are referenced against external Me4Si. ¹H NMR spectra were measured on a JEOL400 MHz spectrometer.

Synthesis of Ligand L'

1,2,4,5-Tetra(pyridin-4-yl)benzene, L'1

This compound was prepared in the same manner as the method applied to L1, except that pyridine-4-ylboronic acid was used instead of pyridine-3-ylboronic acid. (Yield: 1.57 g, 79%). ¹H NMR (400 MHz) in CD₂Cl₂: δ 8.55 (m, br, 8H_c), 7.59 (s, 2H_a), 7.19–7.17 (d, *J* = 4.0 Hz, 8H_b).

4,4',4'',4'''-(Benzene-1,2,4,5-tetrayl)tetrakis(1-(carboxymethyl)pyridin-1-ium) tetrabromide, L'2Br₄ This compound was prepared in a manner analogous to the synthesis of L2Br₄ using L'1 (1.0 g, 2.59 mmol), bromoacetate (2.5 mL, 13.52 mmol) in dry acetonitrile (50 mL) to afford L'2Br₄ as a yellow powder (2.5 g, 92%). ¹H NMR (400 MHz) in D₂O: δ 8.77 (d, *J* = 6.5 Hz, 8H_c), 8.11 (s, 2H_a), 8.05 (d, *J* = 6.5 Hz, 8H_b), 5.48 (s, 8H, NCH₂), 4.21 (q, *J* = 7.1 Hz, 8H, OCH₂), 1.18 (t, *J* = 7.1 Hz, 12H, CH₃).

4,4',4'',4'''-(Benzene-1,2,4,5-tetrayl)tetrakis(1-(carboxymethyl)pyridin-1-ium) tetrachloride, H4L'Cl₄ This compound was prepared in a manner analogous to the synthesis of H4LCl₄ using L'2Br₄ (2.5 g, 2.37 mmol) in 2 M HCl (50 mL) to afford H4L'Cl₄ as a white powder (1.5 g, 83%). ¹H NMR (400 MHz) in D₂O: δ 8.72 (d, J = 6.7 Hz, 8H_c), 8.07 (s, 2H_a), 8.00 (d, J = 6.7 Hz, 8H_b). 5.34 (s, 8H, NCH₂).

Inequivalent aromatic proton designations:

NMR spectra

Fig. S1. ¹H NMR spectrum of **L1** in CD₂Cl₂ († from CDHCl₂ and * from water).

Fig. S2. ¹H NMR spectrum of L2Br₄ in D₂O († from HOD).

Fig. S3. ¹H NMR spectrum of H_4LCl_4 in D_2O († from HOD and * from ethanol).

Fig. S4. ¹H NMR spectrum of L'1 in CD₂Cl₂. († from CDHCl₂).

Fig. S5. ¹H NMR spectrum of $L'2Br_4$ in D₂O († from HOD).

Fig. S6. ¹H NMR spectrum of H₄L'Cl₄ in D₂O († from HOD).