Supplementary Material

Ru/MgO-catalysed selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5furandicarboxylic acid

Priya Lokhande^{A,B,C}, Paresh L. Dhepe^{A,B,*}, Karen Wilson^{D,*} and Adam F. Lee^{D,*}

^ACatalysis and Inorganic Chemistry Division, Council of Scientific & Industrial Research– National Chemical Laboratory, Dr Homi Bhabha Road, Pune, 411008, India

^BAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India

^CCatalysis, School of Science, RMIT University, Melbourne, Vic. 3001, Australia

^DCentre for Catalysis and Clean Energy, Griffith University, Gold Coast Campus, Southport, Qld 4222, Australia

*Correspondence to: Email: <u>pl.dhepe@ncl.res.in</u>, <u>karen.wilson6@griffith.edu.au</u>, <u>adam.lee@griffith.edu.au</u>

SWOT analysis

Figure S1. SWOT analysis for the oxidation of HMF to FDCA.

Catalyst characterisation

Powder X-ray diffractograms were recorded on Rigaku D MAX spectrometer using Cu K_a radiation ($\lambda = 1.5418$ Å) between 5 and 90° at a scan rate of 2° min⁻¹. Transmission electron micrographs were obtained using a FEI TECNAI T20 microscope with an accelerating voltage of 200 kV; samples were dispersed in isopropyl alcohol by ultrasonication and drop cast on a carbon-coated copper grid. Textural properties were determined by N₂ physisorption at –196°C using a Quantachrome Autosorb iQ porosimeter; samples were degassed in vacuo at 150°C for 3 h, with specific surface areas determined by the BET method and mean pore diameters calculated by the BJH method applied to the desorption isotherms. Solid base properties were determined by temperature-programmed desorption of a saturated CO₂ adlayer using a Micromeritics Autochem-2920 instrument: samples were first annealed at 400°C under 40 mL min⁻¹ He for 1 h, then cooled to 50°C under He, prior to exposure to 30 mL min⁻¹ of 10 vol% CO₂ in He for 0.5 h; the sample was then heated to 100°C and flushed with flowing He at 100°C for 1 h to remove physisorbed CO₂; desorption of chemisorbed CO₂ was performed by annealing at 10°C min⁻¹ under 40 mL min⁻¹ He from 100 to 800°C with desorption monitored by a thermal conductivity detector.

Figure S2. (a) TEM images of 0.5wt% Ru/MgO-300-2h and (b) corresponding Ru particle size distribution.

HMF oxidation

Table	S1 .	Literature	review o	f previous	catalytic	systems	for the	oxidation	of HMF	to FDCA.
				1	2	2				

Catalyst	Temperature	O ₂ pressure	Time	HMF	FDCA yield	References
	(°C)	(bar)	(h)	conversion	(%)	
				(%)		
Ru/MgO.La ₂ O ₃	140	2.5	6	99	96	[1]
2 wt% Ru/MgAlO	140	6	4	100	99	[2]
Au/CeO ₂ (w. NaOH)	130	5	3	100	88	[3]
Au/HT	95	10	7	99	98	[4]
10 wt% Au/HT	90	1	_	98	78	[5]
Pt/C-O-Mg	110	10	12	100	96	[6]
Pd/C@Fe ₃ O ₄	80	1	6	98	96	[7]
Homogeneous Co,Mn and K salts in acetic acid	180	30	0.5	90	90	[8]
Pt/y-Al ₂ O ₃	140	10	24	96	96	[9]

Table S2. Impact of Ru metal loading (%) for the oxidation of HMF to FDCA.

Catalyst	HMF	FDCA	HMFCA	FFCA	DFF yield	Unidentified
	Conversion	yield	yield	yield	(%)	products
	(%)	(%)	(%)	(%)		(%)
0.1 wt% Ru/MgO 300°C 4 h	90	44	9	17	12	8
0.5 wt% Ru/MgO 300°C 4 h	96	68	4	9	10	5
1 wt% Ru/MgO 300°C 4 h	100	80	2	4	9	5
5 wt% Ru/MgO 300°C 4 h	100	88	2	1	4	5

Reaction conditions: 4 mmol of HMF, 15 bar O₂, Ru/MgO 300°C 4 h (substrate:metal molar ratio=120), 30 mL of deionised water, 160°C, 6.5 h.

Table S3. Controlled reactions for the oxidation of HMF to FDCA.

Control	HMF	FDCA	HMFCA	FFCA	DFF yield	Unidentified
	Conversion	yield	yield	yield	(%)	products
	(%)	(%)	(%)	(%)		(%)
No catalyst	25	12	2	4	_	7
No oxygen	16	7	1	3	_	5

Reaction conditions: 4 mmol HMF, 30 mL of deionised water, 160°C, 6.5 h. No catalyst: 15 bar O₂. No oxygen: Ru/MgO 300°C 4 h (substrate:metal molar ratio=120).

FDCA isolation and characterisation

The post-reaction mixture was centrifuged to remove the solid catalyst, and subsequently acidified to a pH of 2–3 using 0.1 M HCl. Ethyl acetate was then added to extract FDCA from the aqueous phase, and the ester subsequently evaporated to yielding solid FDCA. ¹H NMR (Figure S3), ¹³C NMR (Figure S4), HRMS (Figure S5) and FTIR (Figure S6) evidenced that the isolated FDCA was >99% pure.

Figure S3. ¹H NMR spectrum of isolated FDCA obtained after the reaction. Solvent: DMSO.

Figure S4. ¹³C NMR spectrum of isolated FDCA obtained after the reaction. Solvent: DMSO.

Figure S5. High resolution mass spectra of isolated FDCA post-reaction. The peak at m/z 179 [M+Na] in the HR-MS profile confirmed the formation of Na salt of FDCA.

Figure S6. (top) FTIR spectrum of isolated FDCA obtained post-reaction: (v cm⁻¹) 3151, 3125 (–OH); 1701 (C=O); 1571, 1423 (furan Ring –C=C–); 1274 (ester–C–O–), 1228 (furan ring –C–O); 962, 853, 762 (=CH). (bottom) reference spectra from Chemical Book (<u>https://www.chemicalbook.com/SpectrumEN_3238-40-2_IR2.htm</u>) on non-linear wavenumber scale.

References

[1] Gorbanev YY, Kegnæs S, Riisager A. Effect of support in heterogeneous ruthenium catalysts used for the selective aerobic oxidation of HMF in water. *Topics in Catalysis*. 2011; 54: 1318.

[2] Antonyraj CA, Huynh NTT, Lee KW, Kim YJ, Shin S, Shin JS, et al. Base-free oxidation of 5-hydroxymethyl-2furfural to 2,5-furan dicarboxylic acid over basic metal oxide-supported ruthenium catalysts under aqueous conditions. *Journal of Chemical Sciences*. 2018; 130: 156.

[3] Li Q, Wang H, Tian Z, Weng Y, Wang C, Ma J, *et al*. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au/CeO₂ catalysts: the morphology effect of CeO₂. *Catalysis Science & Technology*. 2019; 9: 1570.

[4] Ventura M, Dibenedetto A, Aresta M. Heterogeneous catalysts for the selective aerobic oxidation of 5hydroxymethylfurfural to added value products in water. *Inorganica Chimica Acta*. 2018; 470: 11.

[5] Ardemani L, Cibin G, Dent AJ, Isaacs MA, Kyriakou G, Lee AF, *et al*. Solid base catalysed 5-HMF oxidation to 2,5-FDCA over Au/hydrotalcites: fact or fiction? *Chemical Science*. 2015; 6: 4940.

[6] Xuewang H, Liang G, Guo Y, Jia R, Liu X, Zhang Y, et al. Base-free aerobic oxidation of 5-

hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/c O Mg catalyst. *Green Chemistry*. 2016; 18: 1597.

[7] Liu B, Ren Y, Zhang Z. Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions. *Green Chemistry*. 2015; 17: 1610.

[8] Zuo X, Venkitasubramanian P, Busch DH, Subramaniam B. Optimization of Co/Mn/Br-Catalyzed oxidation of 5-hydroxymethylfurfural to enhance 2,5-furandicarboxylic acid yield and minimize substrate burning. *ACS Sustainable Chemistry & Engineering*. 2016; 4: 3659.

[9] Sahu R, Dhepe PL. Synthesis of 2,5-furandicarboxylic acid by the aerobic oxidation of 5-hydroxymethyl furfural over supported metal catalysts. *Reaction Kinetics, Mechanisms and Catalysis*. 2014; 112: 173.