Supplementary Material

Synthesis, characterization and base hydrolysis of cobalt(III) complexes coordinated by substituted phenylthioether ligands

Lee Roecker^{A,B,*}, Alicia Cohn^B, Thomas Cox^B, Rachel Ceaglske^A, Olivia Rick^A, Ella Miller Knagge^A and Sean Parkin^{C,*}

^ADepartment of Chemistry, Northern Michigan University, Marquette, MI 49855, USA

^BDepartment of Chemistry, Gettysburg College, Gettysburg, PA 17325, USA

^CDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA

*Correspondence to: Email: lroecker@nmu.edu, s.parkin@uky.edu

Scheme S1. The $S_N 1CB$ mechanism illustrated for the base hydrolysis of the $[(NH_3)_5 CoCl]^{2+1}$ ion.

Co(1)-N(4)	1.955(2)	Co(1)-N(2)	1.977(2)
Co(1)-N(5)	1.978(2)	Co(1)-N(3)	1.981(2)
Co(1)-N(1)	1.986(2)	Co(1)-S(1)	2.2594(7)
S(1)-C(7)	1.774(3)	S(1)-C(6)	1.817(3)
N(1)-C(1)	1.491(3)	N(1)-H(1A)	0.91
N(1)-H(1B)	0.91	C(1)-C(2)	1.503(3)
C(1)-H(1C)	0.99	C(1)-H(1D)	0.99
C(2)-N(2)	1.495(3)	C(2)-H(2A)	0.99
C(2)-H(2B)	0.99	N(2)-H(2C)	0.91
N(2)-H(2D)	0.91	N(3)-C(3)	1.492(3)
N(3)-H(3A)	0.91	N(3)-H(3B)	0.91
C(3)-C(4)	1.506(3)	C(3)-H(3C)	0.99
C(3)-H(3D)	0.99	C(4)-N(4)	1.492(3)
C(4)-H(4A)	0.99	C(4)-H(4B)	0.99
N(4)-H(4C)	0.91	N(4)-H(4D)	0.91
N(5)-C(5)	1.489(3)	N(5)-H(5A)	0.91
N(5)-H(5B)	0.91	C(5)-C(6)	1.506(4)
C(5)-H(5C)	0.99	C(5)-H(5D)	0.99
C(6)-H(6A)	0.99	C(6)-H(6B)	0.99
C(7)-C(12)	1.392(4)	C(7)-C(8)	1.395(4)
C(8)-C(9)	1.386(4)	C(8)-H(8)	0.95
C(9)-C(10)	1.381(4)	C(9)-H(9)	0.95
C(10)-C(11)	1.389(4)	C(10)-H(10)	0.95
C(11)-C(12)	1.389(4)	C(11)-H(11)	0.95
C(12)-H(12)	0.95	Cl(1)-O(3)	1.4337(19)
Cl(1)-O(4)	1.4391(19)	Cl(1)-O(1)	1.4483(19)
Cl(1)-O(2)	1.4491(18)	Cl(2)-O(7)	1.4334(18)
Cl(2)-O(8)	1.4365(19)	Cl(2)-O(5)	1.4502(19)
Cl(2)-O(6)	1.4537(18)	Cl(3)-O(10)	1.4331(18)
Cl(3)-O(11)	1.439(2)	Cl(3)-O(9)	1.446(2)
Cl(3)-O(12)	1.4497(18)	O(1W)-H(1W)	0.78(3)
O(1W)-H(2W)	0.78(3)		

Table S1. Bond lengths (Å) for the [(en)₂Co(<u>S(</u>phenyl)CH₂CH<u>2N</u>H₂)]³⁺ cation.

N(4)-Co(1)-N(2)	89.16(9)	N(4)-Co(1)-N(5)	92.90(9)
N(2)-Co(1)-N(5)	177.93(9)	N(4)-Co(1)-N(3)	85.57(8)
N(2)-Co(1)-N(3)	92.46(9)	N(5)-Co(1)-N(3)	87.52(9)
N(4)-Co(1)-N(1)	173.66(9)	N(2)-Co(1)-N(1)	84.86(8)
N(5)-Co(1)-N(1)	93.07(9)	N(3)-Co(1)-N(1)	92.54(8)
N(4)-Co(1)-S(1)	95.10(6)	N(2)-Co(1)-S(1)	94.39(6)
N(5)-Co(1)-S(1)	85.61(6)	N(3)-Co(1)-S(1)	173.13(7)
N(1)-Co(1)-S(1)	87.51(6)	C(7)-S(1)-C(6)	105.95(12)
C(7)-S(1)-Co(1)	115.45(8)	C(6)-S(1)-Co(1)	98.25(9)
C(1)-N(1)-Co(1)	108.49(15)	C(1)-N(1)-H(1A)	110
Co(1)-N(1)-H(1A)	110	C(1)-N(1)-H(1B)	110
Co(1)-N(1)-H(1B)	110	H(1A)-N(1)-H(1B)	108.4
N(1)-C(1)-C(2)	106.8(2)	N(1)-C(1)-H(1C)	110.4
C(2)-C(1)-H(1C)	110.4	N(1)-C(1)-H(1D)	110.4
C(2)-C(1)-H(1D)	110.4	H(1C)-C(1)-H(1D)	108.6
N(2)-C(2)-C(1)	107.1(2)	N(2)-C(2)-H(2A)	110.3
C(1)-C(2)-H(2A)	110.3	N(2)-C(2)-H(2B)	110.3
C(1)-C(2)-H(2B)	110.3	H(2A)-C(2)-H(2B)	108.6
C(2)-N(2)-Co(1)	110.31(15)	C(2)-N(2)-H(2C)	109.6
Co(1)-N(2)-H(2C)	109.6	C(2)-N(2)-H(2D)	109.6
Co(1)-N(2)-H(2D)	109.6	H(2C)-N(2)-H(2D)	108.1
C(3)-N(3)-Co(1)	108.16(15)	C(3)-N(3)-H(3A)	110.1
Co(1)-N(3)-H(3A)	110.1	C(3)-N(3)-H(3B)	110.1
Co(1)-N(3)-H(3B)	110.1	H(3A)-N(3)-H(3B)	108.4
N(3)-C(3)-C(4)	106.5(2)	N(3)-C(3)-H(3C)	110.4
C(4)-C(3)-H(3C)	110.4	N(3)-C(3)-H(3D)	110.4
C(4)-C(3)-H(3D)	110.4	H(3C)-C(3)-H(3D)	108.6
N(4)-C(4)-C(3)	107.3(2)	N(4)-C(4)-H(4A)	110.3
C(3)-C(4)-H(4A)	110.3	N(4)-C(4)-H(4B)	110.3
C(3)-C(4)-H(4B)	110.3	H(4A)-C(4)-H(4B)	108.5
C(4)-N(4)-Co(1)	110.09(15)	C(4)-N(4)-H(4C)	109.6
Co(1)-N(4)-H(4C)	109.6	C(4)-N(4)-H(4D)	109.6
Co(1)-N(4)-H(4D)	109.6	H(4C)-N(4)-H(4D)	108.2
C(5)-N(5)-Co(1)	115.18(16)	C(5)-N(5)-H(5A)	108.5
Co(1)-N(5)-H(5A)	108.5	C(5)-N(5)-H(5B)	108.5
Co(1)-N(5)-H(5B)	108.5	H(5A)-N(5)-H(5B)	107.5
N(5)-C(5)-C(6)	107.9(2)	N(5)-C(5)-H(5C)	110.1
C(6)-C(5)-H(5C)	110.1	N(5)-C(5)-H(5D)	110.1
C(6)-C(5)-H(5D)	110.1	H(5C)-C(5)-H(5D)	108.4
C(5)-C(6)-S(1)	104.89(17)	C(5)-C(6)-H(6A)	110.8
S(1)-C(6)-H(6A)	110.8	C(5)-C(6)-H(6B)	110.8

Table S2. Bond angles (°) for the [(en)₂Co(<u>S(phenyl</u>)CH₂CH₂NH₂)]³⁺ cation.

S(1)-C(6)-H(6B)	110.8 (6A)-C(6)-H(6B)	108.8
C(12)-C(7)-C(8)	121.1(2)	C(12)-C(7)-S(1)	114.94(19)
C(8)-C(7)-S(1)	124.0(2)	C(9)-C(8)-C(7)	118.7(2)
C(9)-C(8)-H(8)	120.6	C(7)-C(8)-H(8)	120.6
C(10)-C(9)-C(8)	120.5(3)	C(10)-C(9)-H(9)	119.7
C(8)-C(9)-H(9)	119.7	C(9)-C(10)-C(11)	120.7(2)
C(9)-C(10)-H(10)	119.6	C(11)-C(10)-H(10)	119.6
C(12)-C(11)-C(10)	119.5(3)	C(12)-C(11)-H(11)	120.2
C(10)-C(11)-H(11)	120.2	C(11)-C(12)-C(7)	119.4(2)
C(11)-C(12)-H(12)	120.3	C(7)-C(12)-H(12)	120.3
O(3)-Cl(1)-O(4)	109.90(13)	O(3)-Cl(1)-O(1)	109.11(11)
O(4)-Cl(1)-O(1)	109.00(12)	O(3)-Cl(1)-O(2)	110.49(12)
O(4)-Cl(1)-O(2)	108.85(11)	O(1)-Cl(1)-O(2)	109.48(11)
O(7)-Cl(2)-O(8)	110.86(11)	O(7)-Cl(2)-O(5)	109.58(11)
O(8)-Cl(2)-O(5)	109.68(12)	O(7)-Cl(2)-O(6)	109.53(11)
O(8)-Cl(2)-O(6)	109.14(12)	O(5)-Cl(2)-O(6)	107.98(11)
O(10)-Cl(3)-O(11)	109.45(12)	O(10)-Cl(3)-O(9)	110.46(12)
O(11)-Cl(3)-O(9)	109.04(13)	O(10)-Cl(3)-O(12)	110.07(12)
O(11)-Cl(3)-O(12)	109.36(12)	O(9)-Cl(3)-O(12)	108.43(12)
H(1W)-O(1W)-H(2W)	106(3)		

R	σ	[OH ⁻], M	k_{obsd}, s^{-1}	k _{он} , M ⁻¹ s ⁻¹	log(K _R /K _H)
4-methoxy	-0.27	0.0100	0.0101	1.01	-0.69
		0.0100	0.0103	1.03	
		0.0100	0.0100	1.00	
4-methyl	-0.17	0.0100	0.0163	1.63	-0.47
		0.0100	0.0168	1.68	
		0.0100	0.0170	1.70	
3-methyl	-0.07	0.0100	0.0270	2.70	-0.27
		0.0100	0.0263	2.63	
		0.0100	0.0260	2.60	
Н	0.00	0.0100	0.0498	4.98	0.00
		0.0100	0.0496	4.96	
		0.0100	0.0478	4.78	
3-methoxy	0.12	0.0100	0.0562	5.62	0.05
		0.0100	0.0539	5.39	
		0.0100	0.0569	5.69	
		0.0050	0.0270	5.40	
4-bromo	0.23	0.0050	0.0776	15.5	0.50
		0.0050	0.0779	15.6	
		0.0050	0.0763	15.3	
3-bromo	0.37	0.0050	0.149	29.7	0.78
		0.0050	0.148	29.6	
		0.0050	0.143	28.5	

Table S3. Values of k_{obsd} , s⁻¹, for the base hydrolysis reactions of [(en)₂Co(S(C₆H₅R)CH₂CH₂NH₂)]³⁺ at 15 °C, μ = 0.10 M (NaCl).

Figure S1. HETCOR NMR of **1**g, **2**e and **2**f in d_6 -DMSO.

10																		
5 2.4 2.3 2										ſ	5	NH ₂					2+	
2.7 2.6 2.5			No.								H ₂ N/	NH ₂	∖\CI ■NH ₂		Ľ	Br	;	
3.0 2.9 2.8				ð								:	lg					
oton 3.3 3.2 3.1															ALL			
per Million : Pr. .6 3.5 3.4															Ø			
Y : parts 3.7 3	50.0 49.0 X : parts per Milli	48.0 47.0 46	5.0 45.0 44.0	43.0	42.0	41.0	40.0	39.0	38.0	37.0	36.0	35.0	34.0	33.0	32.0	31.0	30.0	29.0
Filenam Author Experim Sample_ Solvent Actual_ Revisio Comment Data Po	e ent Id Start_Time n_Time rmat	<pre>= LR chloro 3 brom = Les_Roecker = hetcor.jxp = LR chloro 3 brom = DMSO-D6 = 8-NOV-2023 08:4 = 11-JAN-2024 16:2 = Heteronuclear Sh = 2D REAL REAL</pre>	 Pield_Strength X_Acq_Duration X_Domain X_Freq X_Offset X_Points X_Prescans X_Resolution X_Sweep X_Sweep Clipped 		= 9.36 = 65.2 = 13C = 100. = 87.0 = 1024 = 4 = 15.3 = 15.7 = 12.5	9766 [T] 0832 [ms] 52530333 9151 {ppr 3546639 0351759 6281407	(400 [M 3 [MHz] a] [Hz] [kHz] [kHz]	Clipped Scans Total_Sc Relaxat: Recvr_G Temp_Get X_Acq_T X_Atn	cane ion_Dela ain t ime	Ŷ	= FAL = 8 = 102 = 1.5 = 56 = 22. = 65. = 5[d]	SE 4 [s] 8 [dC] 20932 [ms] B]	1			:01	~	
Dim_Siz Dim_Tit Dim_Uni Dimensi Site Spectros	e le ts ons meter	<pre>= 819, 256 = Carbonl3 Proton = [ppm] [ppm] = X Y = NMU ECZ400 NMR = DELTA2_NMR</pre>	Y_Domain Y_Freq Y_Offset Y_Points Y_Prescans Y_Resolution Y_Sweep		= 1H = 399. = 5.28 = 128 = 0 = 22.7 = 2.90	78219838 246 [ppm] 2396742 866783 [k	(MHz) (Hz)	Y_Acq_Ti Y_Atn Y_Pulse Irr_Atn Irr_Atn Irr_Atn Irr_Dec	Dec Dec_Cald Dec_Def Bandwidd	c ault_Calc th_Hz	= 11.4 = 44.1 = 3 [d] = 7.4 = 25.1 = 25.1 = 25.1 = 25.2	4 [us] 0064 [ms] B] [us] 5 [dB] 5 [dB] 5 [dB] 8 846154 []	CH z]					

2.0							
5.1							
2.2						Г	- 3+
e la							
4 2							
.2.					6		
2					a Li	H ₂ N	
5.6							
-						H ₂ N	N N
8 2					0		NH ₂ ¹¹²
5					۵		~ _
2.9					Ð		2e
0.1					v		
-1							
23					A		
3.3					V		â
3.4							(0)
S							Ŷ
63							ŵ.
73.			0				V
3. to							
Pro		e					
: u :							
0.			4				
Mil 4			\$				
4 er							
4.2							
par 1.3							
	62.0.62.0.61.4				<u></u>		
	05.0 02.0 01.0 X : parts per Milli	0 00.0 59.0 58.0 57.0	0 56.0 55.0 54.0 53	0 52.0 51.0 50.0 49.0 4	8.0 47.0 46.0 45.0 44.0	43.0 42.0 41.0 40.0 3	9.0 38.0 37.0 36.0 35.0 34.0 33.0
	· · parts per willing	on Carbon 13					200 010 000 000 000 000 000 000 000 000
Author	le.	= LR 3 MeO BIDHN_het	Field_Strength	= 9.389766[T] (400[M	Clipped	- FALSE	
Experim	ent 1d	= hetcor.jxp	X_Domain	= 58.9024[ms] = 13C	Scans Total Scans	= 16	
Solvent		= LR 3 MeO BIDEN = DMSO-D6	X_Freq X Offset	= 100.52530333 (MHz)		- 4048	
Actual_ Revisio	Start_Time	= 8-NOV-2023 18:00:	X_Points	= 1024	Relaxation_Delay Recvr_Gain	■ 1.5(s) ■ 56	
Comment	_		L_Prescans L_Resolution	= 4 = 16.95421007 (#+1	Temp_Get	= 22.9 [dc]	
Data_Fo	rmat	<pre>= Heteronuclear Shif = 2D REAL REAL</pre>	X_Sweep	= 17.36111111 (kHz)	X_ACQ_TIME X_Atn	= 50.9824 [ms] = 5[dB]	
Dim Siz	e le	= 819, 256	Y_Domain	= 13.88888889(%Hz) = 1H	X_Pulse X Acg Time	= 11.4[us]	
Dim_Uni	te	= [ppm] [ppm]	Y_Freq Y Offset	= 399.78219838[MHz]	Y_Atn	= 1/.06816[ms] = 3(dB)	
Dimensio Site	ODS	= X Y	Y_Points	= 128	Y_Fulse Irr_Atn Dec	= 7.4[us] = 25.5(dB)	
Spectro	meter	= DELTA2_NMR	Y_Resolution	= 0 = 21.24578484 (He)	Irr_Atn_Dec_Calc	= 25.5[dB]	
			Y_Sweep	= 2.71946046[kHz]	Irr_Dec_Bandwidth_Hz	= 25.5[dB] = 5.28846154[kHz]	

Figure S2. ¹H and ¹³C NMR of the intermediate complexes (1a - 1g) in d_6 -DMSO.

δ, ppm

١Ŧ

APT (Attached Proton Test) NMR Experiment.

In an APT experiment, carbon atoms attached to 0 or 2 hydrogen atoms appear in one direction while those attached to 1 or 3 hydrogen atoms appear in the other direction.

-

δ, ppm

Figure S3. ¹H and ¹³C NMR of the bidentate thioether complexes (2a - 2g) in d_{6} -DMSO.

APT (Attached Proton Test) NMR Experiment.

In an APT experiment, carbon atoms attached to 0 or 2 hydrogen atoms appear in one direction while those attached to 1 or 3 hydrogen atoms appear in the other direction.

Figure S4. UV (lower) and visible (upper) spectra of **1g** in 0.01 M HCl. The lower spectrum was recorded after a 1:25 dilution.

Figure S5. Visible-UV spectra of the κ^2 N,S complexes (**2a - 2g**) in 0.01 M HClO4.

2a

2b

2c

2e

2f

Figure S5. (Cont.)

Figure S5. (Cont.)

2d

Figure S6. Representative kinetic plots. These data were collected on a CARY 100 Bio UVvisible spectrophotometer. (*a*) Repetitive scans for the base hydrolysis of **2d** at pH ~10.7. This is a lower pH than was used in the study in order to make a good figure given the instrument that was available. The isosbestic behavior is consistent with the formation of a single product. (*b*) Typical decay curve monitored at 332 nm for the base hydrolysis of 2d. In this example, 200 data points were collected. (*c*) Plot of $\ln|At - Ainf| v$. time for the data collected in Figure S1*b*. Consistent with first-order behavior, this plot is linear for at least 5 half-lives.

(a)

Figure Sb. (Cont.)