Ab initio studies on amides: conformational preferences of formimide and barriers to interconversion of the conformers
Australian Journal of Chemistry
33(8) 1635 - 1642
Published: 1980
Abstract
Formimide (diformamide), the parent of the diacylamines, is capable of existing in three basic ground-state conformations about the N-C bonds. Full geometry optimization with the STO-3G basis set predicts that all three conformers are fully coplanar, that the E,E (1) and E,Z(3) conformers are of similar energy, and that the Z,Z (2) conformer is of somewhat higher energy (by 11 kJ mol-1); 4-31G evaluation of the energies suggests that (2) is by far the least stable and that (1) is of higher energy than (3) by 6.5 kJ mol-1. Analysis of the calculated charge distribution suggests that (2) is destabilized by electrostatic repulsion. These results are consistent with experimental conclusions that planar (3) is strongly preferred in the vapour state at room temperature and that (2) has not been observed in the vapour state or in solution. Partial geometry optimization with the STO-3G basis set of model transition states for internal rotation suggests a barrier height of 52 kJ mol-1 (72 kJ mol-1 when evaluated with the 4-31G basis set) for the conversion (3) → (1).
https://doi.org/10.1071/CH9801635
© CSIRO 1980