Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Some wave functions for the four-electron threecentre bonding of four- and eight-π-electron systems

RD Harcourt and JF Sillitoe

Australian Journal of Chemistry 27(4) 691 - 711
Published: 1974

Abstract

For symmetrical four-electron three-centre bonding units, the standard valence-bond (VB), delocalized molecular orbital (MO), increased-valence (IV) and non-paired spatial orbital (NPSO) representations of the electrons are

Diagram

O3, NO2- and CF2 with four π-electrons, and N3-, CO2 and NO2+ with eight π-electrons, have respectively one and two four-electron three-centre bonding units for these n-electrons. By means of Pople-Parr-Pariser type approximations, the MO, standard VB, IV and NPSO wave functions for these systems are compared with complete VB (or best configuration interaction) wave functions for the ground states. Similar studies are reported for the n-electrons of N2O. Further demonstration is given for the important result obtained elsewhere that the IV formulae must always have energies which are lower than those of the standard VB formulae, provided that the same technique is used to construct electron-pair bond wave functions. The extra stability arises because IV formulae summarize resonance between the standard VB formulae and long-bond formulae of the type

Diagram

As has been discussed elsewhere, the latter structure can make appreciable contributions to the complete VB resonance when its atomic formal charges are either zero or small in magnitude.If two-centre bond orbitals are used to construct the wave functions for the one-electron bond(s) and the two-electron bond(s) of IV formulae, then the IV and MO wave functions are almost identical for the symmetrical systems. Further numerical evidence is provided for this near-equivalence.

https://doi.org/10.1071/CH9740691

© CSIRO 1974

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions