Mechanisms of aromatic nucleophilic substitution by the ambident thiocyanate ion
DE Giles and AJ Parker
Australian Journal of Chemistry
26(2) 273 - 299
Published: 1973
Abstract
Sulphur/nitrogen reactivity ratios in a series of aromatic nucleophilic substitution reactions of ambident thiocyanate ion have been determined. There are profound differences from the pattern found in SN2 reactions at a saturated carbon atom. Abnormal transition states, involving interactions between entering and leaving group, are likely in the bond-breaking step of the intermediate complex in reactions of thiocyanate ion with 1-fluoro-2,4-dinitrobenzene and with 2,4- dinitrophenyl 4-toluenesulphonate. The nitro-substituted aryl thiocyanates are shown to be tri-functional electrophiles, with reactive centres at aromatic carbon, at cyanide carbon, and at sulphur. Aryl 4-toluenesulphonates are bifunctional electrophiles with reactive centres at aryl carbon and sulphonyl sulphur. The site of attack by nucleophiles depends on the nature of the nucleophile. The sulphur/nitrogen reactivity ratio of ambident SCN-, and the electrophilic reactivity of tri- and bi-functional substrates, are in most instances consistent with the Hard and Soft Acids and Bases principle. Exceptions to the principle in some instances reveal differences between the SNAr and SN2 mechanisms, and in others indicate abnormal transition states.https://doi.org/10.1071/CH9730273
© CSIRO 1973