Diversified applications and synthesis of hydroxamic acids
Yao Li A , Junzhou Li A , Chaoying Cai A , Li Yang A , Yiqiao Hao B , Guoliang Chen A * and Xuefei Bao A *A
B
Abstract
Owing to the ability to form coordination complexes with several metal ions, hydroxamic acids have been widely used in the fields of medicinal chemistry, mineral flotation, metal–organic frameworks (MOFs), remediation of metal contamination and more. Since three hydroxamic acid-based histone deacetylase (HDAC) inhibitors were approved by the US Food and Drug Administration (FDA) for the treatment of haematologic malignancies, such functional groups have acquired even more attention in synthetic medicinal chemistry. However, application of hydroxamic acids for ore beneficiation is a unique area and has attracted the attention of few researchers. In order to provide insights for chemists in drug development, chelating mineral collector selection, remediation of metal pollution and preparation of MOFs, we summarize the applications of hydroxamic acids in the above-mentioned fields, and then introduce some related synthesis strategies including microwave synthesis, use of continuous flow reactors, solid-phase synthesis and enzymatic synthesis as supplements to classical synthetic methods.
Keywords: application, hydroxamic acids, medicinal chemistry, metal flotation, metal–organic frameworks, MOFs, remediation of pollution, synthetic methods.
References
1 Li Y, Seto E. HDACs and HDAC Inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med 2016; 6: a026831.
| Crossref | Google Scholar | PubMed |
2 Meng Q, Feng Q, Ou L. Flotation behavior and adsorption mechanism of fine wolframite with octyl hydroxamic acid. J Cent South Univ 2016; 23: 1339-1344.
| Crossref | Google Scholar |
3 John SG, Ruggiero CE, Hersman LE, Tung C-S, Neu MP. Siderophore mediated plutonium accumulation by Microbacterium flavescens (JG-9). Environ Sci Technol 2001; 35: 2942-2948.
| Crossref | Google Scholar | PubMed |
4 Lutfor MR, Mashitah MY. Synthesis of poly(hydroxamic acid)-poly(amidoxime) chelating ligands for removal of metals from industrial wastewater. J Chem 2011; 8: 1038-1043.
| Crossref | Google Scholar |
5 Codd R. Traversing the coordination chemistry and chemical biology of hydroxamic acids. Coord Chem Rev 2008; 252: 1387-1408.
| Crossref | Google Scholar |
6 Singh RV. Enzymatic catalysts for hydroxamic acid formation: a mini-review. ChemBioEng Rev 2023; 11: 339-347.
| Crossref | Google Scholar |
7 García B, Ibeas S, Muñoz A, Leal JM, Ghinami C, Secco F, Venturini M. NMR Studies of phenylbenzohydroxamic acid and kinetics of complex formation with nickel(II). Inorg Chem 2003; 42: 5434-5441.
| Crossref | Google Scholar | PubMed |
8 Keth J, Johann T, Frey H. Hydroxamic acid: an underrated moiety? marrying bioinorganic chemistry and polymer science. Biomacromolecules 2020; 21: 2546-2556.
| Crossref | Google Scholar | PubMed |
9 Rahman ML, Sarjadi MS, Sarkar SM, Walsh DJ, Hannan JJ. Poly(hydroxamic acid) resins and their applications. Coord Chem Rev 2022; 471: 214727.
| Crossref | Google Scholar |
10 Brown DA, Coogan RA, Fitzpatrick NJ, Glass WK, Abukshima DE, Shiels L, Ahlgrén M, Smolander K, Pakkanen TT, Pakkanen TA, Peräkylä M. Conformational behaviour of hydroxamic acids: ab initio and structural studies. J Chem Soc, Perkin Trans 2 1996; 1996(12): 122673-2679.
| Crossref | Google Scholar |
11 Geurs S, Clarisse D, De Bosscher K, D’hooghe M. The zinc-binding group effect: lessons from non-hydroxamic acid vorinostat analogs. J Med Chem 2023; 66: 7698-7729.
| Crossref | Google Scholar | PubMed |
12 Buglass AJ, Hudson K, Tillett JG. The acid-catalysed hydrolysis and protonation behaviour of hydroxamic acids. J Chem Soc, B 1971; 123:.
| Crossref | Google Scholar |
13 Berndt DC, Fuller RL. The kinetics and mechanism of the hydrolysis of benzohydroxamic acid. J Org Chem 1966; 31: 3312-3314.
| Crossref | Google Scholar |
14 Flipo M, Charton J, Hocine A, Dassonneville S, Deprez B, Deprez-Poulain R. Hydroxamates: relationships between structure and plasma stability. J Med Chem 2009; 52: 6790-6802.
| Crossref | Google Scholar | PubMed |
15 Shen S, Kozikowski AP. Why hydroxamates may not be the best histone deacetylase inhibitors—what some may have forgotten or would rather forget? ChemMedChem 2016; 11: 15-21.
| Crossref | Google Scholar | PubMed |
16 Pan Y, Hou H, Zhou B, Gao J, Gao F. Hydroxamic acid hybrids: histone deacetylase inhibitors with anticancer therapeutic potency. Eur J Med Chem 2023; 262: 115879.
| Crossref | Google Scholar | PubMed |
17 Verma RP. Hydroxamic acids as matrix metalloproteinase inhibitors. In: Gupta SP, editor. Matrix Metalloproteinase Inhibitors. Vol. 103. Experientia Supplementum. Basel, Switzerland: Springer; 2012. pp. 137–176. 10.1007/978-3-0348-0364-9_5
18 Muri EM, Nieto MJ, Sindelar RD, Williamson JS. Hydroxamic acids as pharmacological agents. Curr Med Chem 2002; 9: 1631-1653.
| Crossref | Google Scholar | PubMed |
19 Li H, Gong Y, Zhong Q. In vivo anticancer potential of hydroxamic acid derivatives. Curr Top Med Chem 2021; 21: 1737-1755.
| Crossref | Google Scholar | PubMed |
20 Neganova ME, Klochkov SG, Aleksandrova YR, Aliev G. The hydroxamic acids as potential anticancer and neuroprotective agents. Curr Med Chem 2021; 28: 8139-8162.
| Crossref | Google Scholar | PubMed |
21 Bertrand S, Hélesbeux J-J, Larcher G, Duval O. Hydroxamate, a key pharmacophore exhibiting a wide range of biological activities. Mini Rev Med Chem 2013; 13: 1311-1326.
| Crossref | Google Scholar | PubMed |
22 Alam MA. Methods for hydroxamic acid synthesis. Curr Org Chem 2019; 23: 978-993.
| Crossref | Google Scholar | PubMed |
23 Ganeshpurkar A, Kumar D, Singh SK. Strategies for the synthesis of hydroxamic acids. Curr Org Synth 2018; 15: 154-165.
| Crossref | Google Scholar |
24 Citarella A, Moi D, Pinzi L, Bonanni D, Rastelli G. Hydroxamic acid derivatives: from synthetic strategies to medicinal chemistry applications. ACS Omega 2021; 6: 21843-21849.
| Crossref | Google Scholar | PubMed |
25 Khai NQ, Vu TK. Coumarin-derived hydroxamic acids as histone deacetylase inhibitors: a review of anti-cancer activities. Anticancer Agents Med Chem 2024; 24: 18-29.
| Crossref | Google Scholar | PubMed |
26 Shanmukha KD, Paluvai H, Lomada SK, Gokara M, Kalangi SK. Histone deacetylase (HDACs) inhibitors: clinical applications. In: Singh V, Mani I, editors. Progress in Molecular Biology and Translational Science. Vol. 198. Academic Press; 2023. pp. 119–152. 10.1016/bs.pmbts.2023.02.011
27 Hai R, Yang D, Zheng F, Wang W, Han X, Bode AM, Luo X. The emerging roles of HDACs and their therapeutic implications in cancer. Eur J Pharmacol 2022; 931: 175216.
| Crossref | Google Scholar | PubMed |
28 Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harbor Perspect Med 2016; 6: a026831.
| Crossref | Google Scholar | PubMed |
29 Codd R, Braich N, Liu J, Soe CZ, Pakchung AAH. Zn(II)-dependent histone deacetylase inhibitors: suberoylanilide hydroxamic acid and trichostatin A. Int J Biochem Cell Biol 2009; 41: 736-739.
| Crossref | Google Scholar | PubMed |
30 Campbell P, Thomas CM. Belinostat for the treatment of relapsed or refractory peripheral T-cell lymphoma. J Oncol Pharm Pract 2017; 23: 143-147.
| Crossref | Google Scholar | PubMed |
31 El Omari N, Bakrim S, Khalid A, Albratty M, Abdalla AN, Lee L-H, Goh KW, Ming LC, Bouyahya A. Anticancer clinical efficiency and stochastic mechanisms of belinostat. Biomed Pharmacother 2023; 165: 115212.
| Crossref | Google Scholar | PubMed |
32 Valiulienė G, Stirblytė I, Jasnauskaitė M, Borutinskaitė V, Navakauskienė R. Anti-leukemic effects of HDACi Belinostat and HMTi 3-Deazaneplanocin A on human acute promyelocytic leukemia cells. Eur J Pharmacol 2017; 799: 143-153.
| Crossref | Google Scholar | PubMed |
33 Lobo J, Guimarães-Teixeira C, Barros-Silva D, Miranda-Gonçalves V, Camilo V, Guimarães R, Cantante M, Braga I, Maurício J, Oing C, Honecker F, Nettersheim D, Looijenga LH, Henrique R, Jerónimo C. Efficacy of HDAC inhibitors belinostat and panobinostat against cisplatin-sensitive and cisplatin-resistant testicular germ cell tumors. Cancers 2020; 12: 2903.
| Crossref | Google Scholar | PubMed |
34 Peter RM, Sarwar MS, Mostafa SZ, Wang Y, Su X, Kong A-N. Histone deacetylase inhibitor belinostat regulates metabolic reprogramming in killing KRAS-mutant human lung cancer cells. Mol Carcinog 2023; 62: 1136-1146.
| Crossref | Google Scholar | PubMed |
35 Bhartia S, Bhattacharya S, Chakrapani A. MM-003: Panobinostat: a light at the end of the tunnel. Clin Lymph Myelom Leuk 2020; 20: S286.
| Crossref | Google Scholar |
36 Ibrahim N, Buchbinder EI, Granter SR, Rodig SJ, Giobbie-Hurder A, Becerra C, Tsiaras A, Gjini E, Fisher DE, Hodi FS. A phase I trial of panobinostat (LBH589) in patients with metastatic melanoma. Cancer Med 2016; 5: 3041-3050.
| Crossref | Google Scholar | PubMed |
37 Khushalani NI, Markowitz J, Eroglu Z, Giuroiu I, Ladanova V, Reiersen P, Rich J, Thapa R, Schell MJ, Sotomayor EM, Weber JS. A phase I trial of panobinostat with ipilimumab in advanced melanoma. J Clin Oncol 2017; 35: 9547.
| Crossref | Google Scholar |
38 Espinoza AF, Patel RH, Patel KR, Badachhape AA, Whitlock R, Srivastava RK, Govindu SR, Duong A, Kona A, Kureti P, Armbruster B, Kats D, Srinivasan RR, Dobrolecki LE, Yu X, Najaf Panah MJ, Zorman B, Sarabia SF, Urbicain M, Major A, Bissig KD, Keller C, Lewis MT, Heczey A, Sumazin P, López-Terrada DH, Woodfield SE, Vasudevan SA. A novel treatment strategy utilizing panobinostat for high-risk and treatment-refractory hepatoblastoma. J Hepatol 2024; 80: 610-621.
| Crossref | Google Scholar | PubMed |
39 Zhu L-J, Sun Y-Q, Wang S, Shi H-J, Li N. Involvement of 5-HT1A receptor-mediated histone acetylation in the regulation of depression. Neuroreport 2021; 32: 1049-1057.
| Crossref | Google Scholar | PubMed |
40 Takahashi K, Abaza Y, Atallah EL, Medeiros BC, Khal S, Arellano ML, Patnaik M, Ghalie R, Garcia-Manero G. Correlation between mutation clearance and clinical response in elderly patients with acute myeloid leukemia (AML) treated with azacitidine and pracinostat. J Clin Oncol 2017; 35: 7034.
| Crossref | Google Scholar |
41 Liang XL, Ouyang L, Yu NN, Sun ZH, Gui ZK, Niu YL, He QY, Zhang J, Wang Y. Histone deacetylase inhibitor pracinostat suppresses colorectal cancer by inducing CDK5-Drp1 signaling-mediated peripheral mitofission. J Pharm Anal 2023; 13: 1168-1182.
| Crossref | Google Scholar | PubMed |
42 White CH, Johnston HE, Moesker B, Manousopoulou A, Margolis DM, Richman DD, Spina CA, Garbis SD, Woelk CH, Beliakova-Bethell N. Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency. Antivir Res 2015; 123: 78-85.
| Crossref | Google Scholar | PubMed |
43 Deeks SG. Shock and kill. Nature 2012; 487: 439-440.
| Crossref | Google Scholar | PubMed |
44 Heffern EFW, Ramani R, Marshall G, Kyei GB. Identification of isoform-selective hydroxamic acid derivatives that potently reactivate HIV from latency. J Virus Erad 2020; 5: 84-91.
| Crossref | Google Scholar |
45 Bose P, Swaminathan M, Pemmaraju N, Ferrajoli A, Jabbour EJ, Daver NG, DiNardo CD, Alvarado Y, Yilmaz M, Huynh-Lu J, Qiao W, Wang X, Matamoros A, Zhou L, Pierce S, Schroeder KD, Kantarjian HM, Verstovsek S. A phase 2 study of pracinostat combined with ruxolitinib in patients with myelofibrosis. Leuk Lymphoma 2019; 60: 1767-1774.
| Crossref | Google Scholar | PubMed |
46 Bouyahya A, El Omari N, Bakha M, Aanniz T, El Menyiy N, El Hachlafi N, El Baaboua A, El-Shazly M, Alshahrani MM, Al Awadh AA, Lee L-H, Benali T, Mubarak MS. Pharmacological properties of trichostatin A, focusing on the anticancer potential: a comprehensive review. Pharmaceuticals 2022; 15: 1235.
| Crossref | Google Scholar | PubMed |
47 Haverkos B, Alpdogan O, Baiocchi R, Brammer JE, Feldman TA, Capra M, Brem EA, Nair S, Scheinberg P, Pereira J, Shune L, Joffe E, Young P, Spruill S, Katkov A, McRae R, Royston I, Faller DV, Rojkjaer L, Porcu P. Targeted therapy with nanatinostat and valganciclovir in recurrent EBV-positive lymphoid malignancies: a phase 1b/2 study. Blood Adv 2023; 7: 6339-6350.
| Crossref | Google Scholar | PubMed |
48 Pereira J, Scheinberg P, Capra M, Porcu P, Spruill S, Strickland D, Haverkos B. A phase 1B/2 study evaluating the safety and efficacy of nanatinostat plus valganciclovir for treatment of relapsed/refractory Epstein–Barr virus-positive nodal peripheral t-cell lymphoma. Hematol Transfus Cell Ther 2023; 45: S344-S345.
| Crossref | Google Scholar |
49 Halder J, Mishra A, Kar B, Ghosh G, Rath G. Recent advances in chemical composition and transdermal delivery systems for topical bio-actives in skin cancer. Curr Topics Med Chem 2023; 23: 31-43.
| Crossref | Google Scholar | PubMed |
50 Kilgour JM, Shah A, Urman NM, Eichstadt S, Do HN, Bailey I, Mirza A, Li S, Oro AE, Aasi SZ, Sarin KY. Phase II open-label, single-arm trial to investigate the efficacy and safety of topical remetinostat gel in patients with basal cell carcinoma. Clin Cancer Res 2021; 27: 4717-4725.
| Crossref | Google Scholar | PubMed |
51 Duan S, Gong X, Liu X, Cui W, Chen K, Mao L, Jun S, Zhou R, Sang Y, Huang G. Histone deacetylase inhibitor, AR-42, exerts antitumor effects by inducing apoptosis and cell cycle arrest in Y79 cells. J Cell Physiol 2019; 234: 22411-22423.
| Crossref | Google Scholar | PubMed |
52 Morales Torres C, Wu MY, Hobor S, Wainwright EN, Martin MJ, Patel H, Grey W, Grönroos E, Howell S, Carvalho J, Snijders AP, Bustin M, Bonnet D, Smith PD, Swanton C, Howell M, Scaffidi P. Selective inhibition of cancer cell self-renewal through a Quisinostat-histone H1.0 axis. Nat Commun 2020; 11: 1792.
| Crossref | Google Scholar | PubMed |
53 Li R, Ling D, Tang T, Huang Z, Wang M, Ding Y, Liu T, Wei H, Xu W, Mao F, Zhu J, Li X, Jiang L, Li J. Discovery of novel Plasmodium falciparum HDAC1 inhibitors with dual-stage antimalarial potency and improved safety based on the clinical anticancer drug candidate Quisinostat. J Med Chem 2021; 64: 2254-2271.
| Crossref | Google Scholar | PubMed |
54 Wang M, Tang T, Li R, Huang Z, Ling D, Zheng L, Ding Y, Liu T, Xu W, Zhu F, Min H, Boonhok R, Mao F, Zhu J, Li X, Jiang L, Li J. Drug repurposing of Quisinostat to discover novel Plasmodium falciparum HDAC1 inhibitors with enhanced triple-stage antimalarial activity and improved safety. J Med Chem 2022; 65: 4156-4181.
| Crossref | Google Scholar | PubMed |
55 Li R, Ling D, Tang T, Huang Z, Wang M, Mao F, Zhu J, Jiang L, Li J, Li X. Repurposing of antitumor drug candidate Quisinostat lead to novel spirocyclic antimalarial agents. Chin Chem Lett 2020; 32: 1660-1664.
| Crossref | Google Scholar |
56 Aggarwal RR, Thomas S, Hauke RJ, Nordquist LT, Munster PN. RENAVIV: a randomized phase III, double-blind, placebo-controlled study of pazopanib with or without abexinostat in patients with locally advanced or metastatic renal cell carcinoma. J Clin Oncol 2019; 37: TPS681.
| Crossref | Google Scholar |
57 Tsang ES, Aggarwal RR, Thomas S, Dhawan MS, Pawlowska N, Bartelink IH, Grabowsky JA, Jahan TM, Truong T-G, Ryan CJ, Munster PN. Updated survival follow-up for phase I study of abexinostat with pazopanib in patients with solid tumor malignancies. J Clin Oncol 2022; 40: 3150.
| Crossref | Google Scholar |
58 Aggarwal RR, Thomas S, Grabowsky JA, Harb A, Leng J, Reinert A, Mastroserio I, Truong T-G, Munster PN. Abexinostat (ABX) as a means to reverse pazopanib (PAZ) resistance: a phase 1 study in advanced solid tumor malignancies. J Clin Oncol 2016; 34: 2519.
| Crossref | Google Scholar |
59 Evens AM, Balasubramanian S, Vose JM, Harb W, Gordon LI, Langdon R, Sprague J, Sirisawad M, Mani C, Yue J, Luan Y, Horton S, Graef T, Bartlett NL. A phase I/II multicenter, open-label study of the oral histone deacetylase inhibitor abexinostat in relapsed/refractory lymphoma. Clin Cancer Res 2016; 22: 1059-1066.
| Crossref | Google Scholar | PubMed |
60 Huang Z, Li R, Tang T, Ling D, Wang M, Xu D, Sun M, Zheng L, Zhu F, Min H, Boonhok R, Ding Y, Wen Y, Chen Y, Li X, Chen Y, Liu T, Han J, Miao J, Fang Q, Cao Y, Tang Y, Cui J, Xu W, Cui L, Zhu J, Wong G, Li J, Jiang L. A novel multistage antiplasmodial inhibitor targeting Plasmodium falciparum histone deacetylase 1. Cell Discovery 2020; 6: 93.
| Crossref | Google Scholar | PubMed |
61 Liva S, Chen M, Mortazavi A, Walker A, Wang J, Dittmar K, Hofmeister C, Coss CC, Phelps MA. Population pharmacokinetic analysis from first-in-human data for HDAC inhibitor, REC-2282 (AR-42), in patients with solid tumors and hematologic malignancies: a case study for evaluating flat vs. body size normalized dosing. Eur J Drug Metab Pharmacokinet 2021; 46: 807-816.
| Crossref | Google Scholar | PubMed |
62 Curran S, Murray GI. Matrix metalloproteinases. Eur J Cancer 2000; 36: 1621-1630.
| Crossref | Google Scholar | PubMed |
63 Kapoor C, Vaidya S, Wadhwan V, Hitesh G, Kaur G, Pathak A. Seesaw of matrix metalloproteinases (MMPs). J Cancer Res Ther 2016; 12: 28-35.
| Crossref | Google Scholar | PubMed |
64 Steward WP, Thomas AL. Marimastat: the clinical development of a matrix metalloproteinase inhibitor. Expert Opin Invest Drugs 2000; 9: 2913-2922.
| Crossref | Google Scholar | PubMed |
65 Pijet B, Konopka A, Rejmak E, Stefaniuk M, Khomiak D, Bulska E, Pikul S, Kaczmarek L. The matrix metalloproteinase inhibitor marimastat inhibits seizures in a model of kainic acid-induced status epilepticus. Sci Rep 2020; 10: 21314.
| Crossref | Google Scholar | PubMed |
66 Bruce C, Thomas PS. The effect of marimastat, a metalloprotease inhibitor, on allergen-induced asthmatic hyper-reactivity. Toxicol Appl Pharmacol 2005; 205: 126-132.
| Crossref | Google Scholar | PubMed |
67 Scatena R. Prinomastat, a hydroxamate-based matrix metalloproteinase inhibitor. A novel pharmacological approach for tissue remodelling-related diseases. Expert Opin Invest Drugs 2000; 9: 2159-2165.
| Crossref | Google Scholar | PubMed |
68 Garcia C, Bartsch D-U, Rivero ME, Hagedorn M, McDermott CD, Bergeron-Lynn G, Cheng L, Appelt K, Freeman WR. Efficacy of Prinomastat (AG3340), a matrix metalloprotease inhibitor, in treatment of retinal neovascularization. Curr Eye Res 2002; 24: 33-38.
| Crossref | Google Scholar | PubMed |
69 Bencsik P, Pálóczi J, Kocsis GF, Pipis J, Belecz I, Varga ZV, Csonka C, Görbe A, Csont T, Ferdinandy P. Moderate inhibition of myocardial matrix metalloproteinase-2 by ilomastat is cardioprotective. Pharmacol Res 2014; 80: 36-42.
| Crossref | Google Scholar | PubMed |
70 Wang Y-D, Wang W. Protective effect of ilomastat on trinitrobenzenesulfonic acid-induced ulcerative colitis in rats. World J Gastroenterol 2008; 14: 5683-5688.
| Crossref | Google Scholar | PubMed |
71 Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer—trials and tribulations. Science 2002; 295: 2387-2392.
| Crossref | Google Scholar | PubMed |
72 Thabet MM, Huizinga TWJ. Drug evaluation: apratastat, a novel TACE/MMP inhibitor for rheumatoid arthritis. Curr Opin Invest Drugs 2006; 7: 1014-1019.
| Google Scholar | PubMed |
73 Lartey NL, Valle-Reyes S, Vargas-Robles H, Jiménez-Camacho KE, Guerrero-Fonseca IM, Castellanos-Martínez R, Montoya-García A, García-Cordero J, Cedillo-Barrón L, Nava P, Filisola-Villaseñor JG, Roa-Velázquez D, Zavala-Vargas DI, Morales-Ríos E, Salinas-Lara C, Vadillo E, Schnoor M. ADAM17/MMP inhibition prevents neutrophilia and lung injury in a mouse model of COVID-19. J Leukoc Biol 2022; 111: 1147-1158.
| Crossref | Google Scholar | PubMed |
74 Murumkar PR, Ghuge RB, Chauhan M, Barot RR, Sorathiya S, Choudhary KM, Joshi KD, Yadav MR. Recent developments and strategies for the discovery of TACE inhibitors. Expert Opin Drug Discov 2020; 15: 779-801.
| Crossref | Google Scholar | PubMed |
75 Duffy MJ, Crown J, Mullooly M. ADAM10 and ADAM17: new players in Trastuzumab resistance. Oncotarget 2014; 5: 10963-4.
| Crossref | Google Scholar | PubMed |
76 Stearns B, Losee K A, Bernstein J. Hydroxyurea. A new type of potential antitumor agent. J. Med. Chem. 1963; 1963(6): 201.
| Crossref | Google Scholar | PubMed |
77 Young CW, Hodas S. Hydroxyurea: inhibitory effect on DNA metabolism. Science 1964; 146: 1172-1174.
| Crossref | Google Scholar | PubMed |
78 Donehower RC. An overview of the clinical experience with hydroxyurea. Semin Oncol 1992; 19(3 Suppl 9): 11-19.
| Google Scholar | PubMed |
79 Piver MS, Barlow JJ, Vongtama V, Blumenson L. Hydroxyurea: a radiation potentiator in carcinoma of the uterine cervix. Am J Obstet Gynecol 1983; 147: 803-808.
| Crossref | Google Scholar | PubMed |
80 Schrell UM, Rittig MG, Anders M, Kiesewetter F, Marschalek R, Koch UH, Fahlbusch R. Hydroxyurea for treatment of unresectable and recurrent meningiomas. I. Inhibition of primary human meningioma cells in culture and in meningioma transplants by induction of the apoptotic pathway. J Neurosurg 1997; 86: 845-852.
| Crossref | Google Scholar | PubMed |
81 Berglund O, Sjöberg BM. Effect of hydroxyurea on T4 ribonucleotide reductase. J Biol Chem 1979; 254: 253-254.
| Crossref | Google Scholar |
82 Andersen JA. Benurestat, a urease inhibitor for the therapy of infected ureolysis. Invest Urol 1975; 12: 381-386.
| Google Scholar | PubMed |
83 Griffith DP, Gibson JR, Clinton CW, Musher DM. Acetohydroxamic acid: clinical studies of a urease inhibitor in patients with staghorn renal calculi. J Urol 1978; 119: 9-15.
| Crossref | Google Scholar | PubMed |
84 Liu Q, Shi W-K, Ren S-Z, Ni W-W, Li W-Y, Chen H-M, Liu P, Yuan J, He X-S, Liu J-J, Cao P, Yang P-Z, Xiao Z-P, Zhu H-L. Arylamino containing hydroxamic acids as potent urease inhibitors for the treatment of Helicobacter pylori infection. Eur J Med Chem 2018; 156: 126-136.
| Crossref | Google Scholar | PubMed |
85 Tsukamoto K, Itakura H, Sato K, Fukuyama K, Miura S, Takahashi S, Ikezawa H, Hosoya T. Binding of salicylhydroxamic acid and several aromatic donor molecules to Arthromyces ramosus peroxidase, investigated by X-ray crystallography, optical difference spectroscopy, NMR relaxation, molecular dynamics, and kinetics. Biochemistry 1999; 38: 12558-12568.
| Crossref | Google Scholar | PubMed |
86 Li F, Zhou X, Zhao G, Lin R. A novel decyl-salicyl hydroxamic acid flotation collector: its synthesis and flotation separation of malachite against quartz. Powder Technol 2020; 374: 522-526.
| Crossref | Google Scholar |
87 McLeod JJA, Caslin HL, Spence AJ, Kolawole EM, Qayum AA, Paranjape A, Taruselli M, Haque TT, Kiwanuka KN, Elford HL, Ryan JJ. Didox (3,4-dihydroxybenzohydroxamic acid) suppresses IgE-mediated mast cell activation through attenuation of NFκB and AP-1 transcription. Cell Immunol 2017; 322: 41-48.
| Crossref | Google Scholar | PubMed |
88 Cui K, Jin S, Duan N. Insights into the adsorption mechanism of benzohydroxamic acid in the flotation of rhodochrosite with Pb2+ activation. Powder Technol 2023; 427: 118705.
| Crossref | Google Scholar |
89 Chen P, Lu X, Chai X, Mulenga H, Gao J, Liu H, Meng Q, Sun W, Gao Y. Influence of Fe–BHA complexes on the flotation behavior of ilmenite. Colloids Surf – A. Physicochem Eng Aspects 2021; 612: 125964.
| Crossref | Google Scholar |
90 Zeng Y, Yao X, Liu G, He G, Yu X, He G, Huang Z, Zhang R, Cheng C. Flotation behavior and mechanism of phenylpropenyl hydroxamic acid for the separation of smithsonite and calcite. J Mol Liq 2021; 339: 116893.
| Crossref | Google Scholar |
91 Yao X, Yu X, Wang L, Zeng Y, Mao L, Liu S, Xie H, He G, Huang Z, Liu Z. Preparation of cinnamic hydroxamic acid collector and study on flotation characteristics and mechanism of scheelite. Int J Min Sci Technol 2023; 33: 773-781.
| Crossref | Google Scholar |
92 Hu Y, Wang D, Xu Z. A study of interactions and flotation of wolframite with octyl hydroxamate. Miner Eng 1997; 10: 623-633.
| Crossref | Google Scholar |
93 Duan H, Liu W, Wang X, Liu W, Zhang N, Zhou S. Flotation separation of bastnaesite from calcite using novel octylmalon dihydroxamic acid as collector. J Mol Liq 2020; 312: 113484.
| Crossref | Google Scholar |
94 Wang W, Zhu Y, Zhang S, Deng J, Huang Y, Yan W. Flotation behaviors of perovskite, titanaugite, and magnesium aluminate spinel using octyl hydroxamic acid as the collector. Minerals 2017; 7: 134.
| Crossref | Google Scholar |
95 Zhou W, Cao W, Zheng K, Zhang L, Shi S, Peng Y. Adsorption of salicyl hydroxamic acid and octyl hydroxamic acid mixture on the cassiterite minerals. Colloids Surf – A. Physicochem Eng Aspects 2024; 685: 133340.
| Crossref | Google Scholar |
96 Zhang S, Huang Z, Wang H, Liu R, Cheng C, Guo Z, Yu X, He G, Fu W. Separation of wolframite ore by froth flotation using a novel “crab” structure sebacoyl hydroxamic acid collector without Pb(NO3)2 activation. Powder Technol 2021; 389: 96-103.
| Crossref | Google Scholar |
97 Zhao G, Zhou X-T, Li F-X, Fu G-Q, Shang X-K. Flotation performance of anisic hydroxamic acid as new collector for tungsten and tin minerals. J Cent South Univ 2022; 29: 3645-3655.
| Crossref | Google Scholar |
98 Liu W, Lv L, Mao Y, Duan H, Yue T, Cao F. Investigation on flotation separation of bastnaesite from calcite with a novel collector: octylamino-bis-(isobutanohydroxamic acid). Adv Powder Technol 2023; 34: 104216.
| Crossref | Google Scholar |
99 Sreenivas T, Srinivas K, Natarajan R, Padmanabhan NPH. An integrated process for the recovery of tungsten and tin from a combined wolframite–scheelite–cassiterite concentrate. Miner Process Extr Metall Rev 2004; 25: 193-203.
| Crossref | Google Scholar |
100 Qin W, Xu Y, Liu H, Ren L, Yang C. Flotation and surface behavior of cassiterite with salicylhydroxamic acid. Ind Eng Chem Res 2011; 50: 10778-10783.
| Crossref | Google Scholar |
101 Brown DA, Bögge H, Coogan R, Doocey D, Kemp TJ, Müller A, Neumann B. Oxygen abstraction reactions of N-substituted hydroxamic acids with molybdenum(V) and vanadium(III) and -(IV) compounds. Inorg Chem 1996; 35: 1674-1679.
| Crossref | Google Scholar | PubMed |
102 Schraml J, Tkadlecová M, Pataridis S, Soukupová L, Blechta V, Roithová J, Exner O. Ring-substituted benzohydroxamic acids: 1H, 13C and 15N NMR spectra and NH—OH proton exchange. Magn Reson Chem 2005; 43: 535-542.
| Crossref | Google Scholar | PubMed |
103 Weck PF, Gong C-MS, Kim E, Thuéry P, Czerwinski KR. One-dimensional uranium–organic coordination polymers: crystal and electronic structures of uranyl-diacetohydroxamate. Dalton Trans 2011; 40: 6007-6011.
| Crossref | Google Scholar | PubMed |
104 Sheetal , Nehra K, Kaushal R, Arora S, Kaur D, Kaushal R. Octahedral titanium(IV) complexes with five novel hydroximic acid ligands: synthesis, spectroscopic characterization, and in vitro activities on IMR-32 and CHO cell lines and ten bacterial strains. Russ J Gen Chem 2016; 86: 154-160.
| Crossref | Google Scholar |
105 Guérard F, Lee Y-S, Tripier R, Szajek LP, Deschamps JR, Brechbiel MW. Investigation of Zr(IV) and 89Zr(IV) complexation with hydroxamates: progress towards designing a better chelator than desferrioxamine B for immuno-PET imaging. Chem Commun 2013; 49: 1002-1004.
| Crossref | Google Scholar | PubMed |
106 Breshears AT, Brown MA, Bloom I, Barnes CL, Gelis AV. Synthesis of hexavalent molybdenum formo- and aceto-hydroxamates and deferoxamine via liquid–liquid metal partitioning. Inorg Chim Acta 2018; 473: 102-111.
| Crossref | Google Scholar |
107 Pathak A, Blair VL, Ferrero RL, Junk PC, Tabor RF, Andrews PC. Synthesis and structural characterisation of bismuth(III) hydroxamates and their activity against Helicobacter pylori. Dalton Trans 2015; 44: 16903-16913.
| Crossref | Google Scholar | PubMed |
108 Munson JW. 1 - 13: 1. Chemistry and biologic activity of hydroxamic acids—an overview. In: H. Kehl, editor. Chemistry and Biology of Hydroxamic Acids: 1st International Symposium, May 1981, Dayton, OH, USA. S.Karger AG; 1982. 10.1159/000430623
109 Abualreish M. The analytical applications and biological activity of hydroxamic acids. J Adv Chem 2014; 10: 2118-2125.
| Crossref | Google Scholar |
110 Al Shaer D, Al Musaimi O, de la Torre BG, Albericio F. Hydroxamate siderophores: natural occurrence, chemical synthesis, iron binding affinity and use as Trojan horses against pathogens. Eur J Med Chem 2020; 208: 112791.
| Crossref | Google Scholar | PubMed |
111 Failes TW, Hambley TW. Towards bioreductively activated prodrugs: Fe(III) complexes of hydroxamic acids and the MMP inhibitor marimastat. J Inorg Biochem 2007; 101: 396-403.
| Crossref | Google Scholar | PubMed |
112 Failes TW, Cullinane C, Diakos CI, Yamamoto N, Lyons JG, Hambley TW. Studies of a cobalt(III) complex of the MMP inhibitor marimastat: a potential hypoxia-activated prodrug. Chem – Eur J 2007; 13: 2974-2982.
| Crossref | Google Scholar | PubMed |
113 Green BP, Renfrew AK, Glenister A, Turner P, Hambley TW. The influence of the ancillary ligand on the potential of cobalt(III) complexes to act as chaperones for hydroxamic acid-based drugs. Dalton Trans 2017; 46: 15897-15907.
| Crossref | Google Scholar | PubMed |
114 Yamamoto N, Danos S, Bonnitcha PD, Failes TW, New EJ, Hambley TW. Cellular uptake and distribution of cobalt complexes of fluorescent ligands. J Biol Inorg Chem 2008; 13: 861-871.
| Crossref | Google Scholar | PubMed |
115 Subramanian RH, Zhu J, Bailey JB, Chiong JA, Li Y, Golub E, Tezcan FA. Cellular uptake and distribution of cobalt complexes of fluorescent ligands. Nat Protoc 2021; 16: 3264-3297.
| Crossref | Google Scholar | PubMed |
116 Sontz PA, Bailey JB, Ahn S, Tezcan FA. A metal organic framework with spherical protein nodes: rational chemical design of 3D protein crystals. J Am Chem Soc 2015; 137: 11598-11601.
| Crossref | Google Scholar | PubMed |
117 Ma D, Li B, Shi Z. Multi-functional sites catalysts based on post-synthetic modification of metal-organic frameworks. Chin Chem Lett 2018; 29(6): 827-830.
| Crossref | Google Scholar |
118 Xu C, Fang R, Luque R, Chen L, Li Y. Functional metal–organic frameworks for catalytic applications. Coord Chem Rev 2019; 388: 268-292.
| Crossref | Google Scholar |
119 Monbaliu J-C, Tinant B, Marchand-Brynaert J. [4 + 2] Cycloadditions of 1-phosphono-1,3-butadienes with nitroso heterodienophiles: a versatile synthetic route for polyfunctionalized aminophosphonic derivatives. J Org Chem 2010; 75: 5478-5486.
| Crossref | Google Scholar | PubMed |
120 Iwasa S, Tajima K, Tsushima S, Nishiyama H. A mild oxidation method of hydroxamic acids: efficient trapping of acyl nitroso intermediates. Tetrahedron Lett 2001; 42: 5897-5899.
| Crossref | Google Scholar |
121 Fakhruddin A, Abu-Elfotoh A-M, Shibatomi K, Iwasa S. A new synthetic route to acylnitroso intermediates and their applications in HDA and Ene reactions. Lett Org Chem 2018; 15: 196-205.
| Crossref | Google Scholar |
122 Yin Z, Zhang J, Wu J, Liu C, Sioson K, Devany M, Hu C, Zheng S. Double hetero-michael addition of N-substituted hydroxylamines to quinone monoketals: synthesis of bridged isoxazolidines. Org Lett 2013; 15: 3534-3537.
| Crossref | Google Scholar | PubMed |
123 Basile T, Capaldo L, Ravelli D, Quadrelli P. Photocatalyzed generation of nitrosocarbonyl intermediates under solar light irradiation. Eur J Org Chem 2020; 2020: 1443-1447.
| Crossref | Google Scholar |
124 Sauer J, Mayer KK. Thermolyse und photolyse von 3-subtituierten Δ2- 1.4.2-dioxazolinonen-(5), Δ2-1.4.2-dioxazolin-thionen-(5) und 4-substituierten Δ3-1.2.5.3-thiadioxazolin-s-oxiden. Tetrahedron Lett 1968; 9: 319-324 [In German].
| Crossref | Google Scholar |
125 Bizet V, Buglioni L, Bolm C. Light-induced ruthenium-catalyzed nitrene transfer reactions: a photochemical approach towards N-Acyl sulfimides and sulfoximines. Angew Chem 2014; 126: 5745-5748.
| Crossref | Google Scholar |
126 Massouh J, Petrelli A, Bellière-Baca V, Hérault D, Clavier H. Rhodium(III)-catalyzed aldehyde C−H activation and functionalization with dioxazolones: an entry to imide synthesis. Adv Synth Catal 2022; 364: 831-837.
| Crossref | Google Scholar |
127 Liu W, Yang W, Zhu J, Guo Y, Wang N, Ke J, Yu P, He C. Dual-ligand-enabled Ir(III)-catalyzed enantioselective C–H amidation for the synthesis of chiral sulfoxides. ACS Catal 2020; 10: 7207-7215.
| Crossref | Google Scholar |
128 Palermo MG. Novel one-pot cyclization of ortho substituted benzonitriles to 3-amino-1,2-benzisoxazoles. Tetrahedron Lett 1996; 37: 2885-2886.
| Crossref | Google Scholar |
129 Tichenor MS, Keith JM, Jones WM, Pierce JM, Merit J, Hawryluk N, Seierstad M, Palmer JA, Webb M, Karbarz MJ, Wilson SJ, Wennerholm ML, Woestenborghs F, Beerens D, Luo L, Brown SM, Boeck MD, Chaplan SR, Breitenbucher JG. Heteroaryl urea inhibitors of fatty acid amide hydrolase: structure–mutagenicity relationships for arylamine metabolites. Bioorg Med Chem Lett 2012; 22: 7357-7362.
| Crossref | Google Scholar | PubMed |
130 Hirotsu T, Katoh S, Sugasaka K, Sakuragi M, Ichimura K, Suda Y, Fujishima M, Abe Y, Misonoo T. Synthesis of dihydroxamic acid chelating polymers and the adsorptive property for uranium in sea water. J Polym Sci – A. Polym Chem 1986; 24: 1953-1966.
| Crossref | Google Scholar |
131 Domb AJ. The synthesis of poly(hydroxamic acid) from poly(acrylamide). Chem Rev 1988; 26: 2623-2630.
| Crossref | Google Scholar |
132 Cao X, Zhou C, Wang S, Man R. Adsorption properties for La(III), Ce(III), and Y(III) with poly(6-acryloylamino-hexyl hydroxamic acid) resin. Polymers 2020; 13: 3.
| Crossref | Google Scholar | PubMed |
133 Cao X, Wang Q, Wang S, Man R. Preparation of a novel polystyrene-poly(hydroxamic acid) copolymer and its adsorption properties for rare earth metal ions. Polymers 2020; 12: 1905.
| Crossref | Google Scholar | PubMed |
134 Rahman ML, Mandal HB, Sarkar SM, Kabir MN, Farid EM, Arshad SE, Musta B. Synthesis of tapioca cellulose-based poly(hydroxamic acid) ligand for heavy metals removal from water. J Macromol Sci – A. Pure ApplChem 2016; 53: 515-522.
| Crossref | Google Scholar |
135 Rahman ML, Sarjadi MS, Arshad SE, Musta B, Heffeman MA, O’Reilly EJ, Sarkar SM. Synthesis of silica-supported hydroxamic ligand for removal of metals ions from water. J Nanosci Nanotechnol 2021; 21: 1570-1577.
| Crossref | Google Scholar | PubMed |
136 Haron MJ, Wan Yunus WMZ. Removal of fluoride ion from aqueous solution by a cerium-poly(hydroxamic acid) resin complex. J Environ Sci Health A Tox Hazard Subst Environ Eng 2001; 36: 727-734.
| Crossref | Google Scholar | PubMed |
137 Février L, Coppin F, Pierrisnard S, Bourdillon M, Nguyen LV, Zaiter N, Brandès S, Sladkov V, Chambron J-C, Meyer M. Efficiency of dihydroxamic and trihydroxamic siderochelates to extract uranium and plutonium from contaminated soils. J Environ Radioact 2021; 235–236: 106645.
| Crossref | Google Scholar | PubMed |
138 Zhang L, Zhang X, Xiang J, Xue J, Song X. Study on treatment of salicylhydroxamic acid wastewater from tungsten molybdenum mineral processing. J. Chem. 2020: 7125874.
| Crossref | Google Scholar |
139 Kant BR, Kant BS, Chand BT, Kumar BA. Green synthesis of hydroxamic acid and its potential industrial applications. In: Kalia VC, editor. Microbial Applications Vol. 2: Biomedicine, Agriculture and Industry. Cham, Switzerland: Springer International Publishing; 2017. pp. 169–184. 10.1007/978-3-319-52669-0_9
140 Parker HL, Sherwood J, Hunt AJ, Clark JH. Cyclic carbonates as green alternative solvents for the Heck reaction. ACS Sustain Chem Eng 2014; 2: 1739-1742.
| Crossref | Google Scholar |
141 Locock KES, Yamamoto I, Tran P, Hanrahan JR, Chebib M, Johnston GAR, Allan RD. γ-Aminobutyric Acid(C) (GABAC) selective antagonists derived from the bioisosteric modification of 4-aminocyclopent-1-enecarboxylic acid: amides and hydroxamates. J Med Chem 2013; 56: 5626-5630.
| Crossref | Google Scholar | PubMed |
142 Chen L, Wilson D, Jayaram HN, Pankiewicz KW. Dual Inhibitors of inosine monophosphate dehydrogenase and histone deacetylases for cancer treatment. J Med Chem 2007; 50: 6685-6691.
| Crossref | Google Scholar | PubMed |
143 Shen J, Woodward R, Kedenburg JP, Liu X, Chen M, Fang L, Sun D, Wang PG. Histone deacetylase inhibitors through click chemistry. J Med Chem 2008; 51: 7417-7427.
| Crossref | Google Scholar | PubMed |
144 Hou J, Li Z, Fang Q, Feng C, Zhang H, Guo W, Wang H, Gu G, Tian Y, Liu P, Liu R, Lin J, Shi Y-K, Yin Z, Shen J, Wang PG. Discovery and extensive in vitro evaluations of NK-HDAC-1: a chiral histone deacetylase inhibitor as a promising lead. J Med Chem 2012; 55: 3066-3075.
| Crossref | Google Scholar | PubMed |
145 Marek L, Hamacher A, Hansen FK, Kuna K, Gohlke H, Kassack MU, Kurz T. Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells. J Med Chem 2013; 56: 427-436.
| Crossref | Google Scholar | PubMed |
146 Behrendt CT, Kunfermann A, Illarionova V, Matheeussen A, Pein MK, Gräwert T, Kaiser J, Bacher A, Eisenreich W, Illarionov B, Fischer M, Maes L, Groll M, Kurz T. Reverse fosmidomycin derivatives against the antimalarial drug target IspC (Dxr). J Med Chem 2011; 54: 6796-6802.
| Crossref | Google Scholar | PubMed |
147 Guandalini L, Cellai C, Laurenzana A, Scapecchi S, Paoletti F, Romanelli MN. Design, synthesis and preliminary biological evaluation of new hydroxamate histone deacetylase inhibitors as potential antileukemic agents. Bioorg Med Chem Lett 2008; 18: 5071-5074.
| Crossref | Google Scholar | PubMed |
148 Cosner CC, Bhaskara Reddy Iska V, Chatterjee A, Markiewicz JT, Corden SJ, Löfstedt J, Ankner T, Richer J, Hulett T, Schauer DJ, Wiest O, Helquist P. Evolution of concise and flexible synthetic strategies for trichostatic acid and the potent histone deacetylase inhibitor trichostatin A. Eur J Org Chem 2013; 2013: 162-172.
| Crossref | Google Scholar |
149 Sørensen MD, Blæhr LKA, Christensen MK, Høyer T, Latini S, Hjarnaa P-JV, Björkling F. Cyclic phosphinamides and phosphonamides, novel series of potent matrix metalloproteinase inhibitors with antitumour activity. Bioorg Med Chem 2003; 11: 5461-5484.
| Crossref | Google Scholar | PubMed |
150 Mai A, Massa S, Pezzi R, Simeoni S, Rotili D, Nebbioso A, Scognamiglio A, Altucci L, Loidl P, Brosch G. Class II (IIa)-selective histone deacetylase inhibitors. 1. Synthesis and biological evaluation of novel (aryloxopropenyl)pyrrolyl hydroxyamides. J Med Chem 2005; 48: 3344-3353.
| Crossref | Google Scholar | PubMed |
151 Nikitjuka A, Jirgensons A. Synthesis of hydroxamic acids by using the acid labile O-2-methylprenyl protecting group. Synlett 2012; 23: 2972-2974.
| Crossref | Google Scholar |
152 McNamara WR, Milot RL, Song H, Snoeberger Iii RC, Batista VS, Schmuttenmaer CA, Brudvig GW, Crabtree RH. Water-stable, hydroxamate anchors for functionalization of TiO2 surfaces with ultrafast interfacial electron transfer. Energy Environ Sci 2010; 3: 917-923.
| Crossref | Google Scholar |
153 Liu R, Duan W, Yan W, Zhang J, Cheng J. Design and synthesis of tri-substituted pyrimidine derivatives as bifunctional tumor immunotherapeutic agents targeting both A2A adenosine receptors and histone deacetylases. Chin Chem Lett 2024; 35: 108136.
| Crossref | Google Scholar |
154 Wang Y, Zhang J, Li K, Xia S, Gou S. Multitargeting HDAC inhibitors containing a RAS/RAF protein interfering unit. J Med Chem 2024; 67: 2066-2082.
| Crossref | Google Scholar | PubMed |
155 Zhu SY, He WJ, Shen GC, Bai ZQ, Song FF, He G, Wang H, Chen G. Ligand-promoted iron-catalyzed nitrene transfer for the synthesis of hydrazines and triazanes through N-amidation of arylamines. Angew Chem Int Ed 2024; 63: e202312465.
| Crossref | Google Scholar | PubMed |
156 Levterov VV, Panasiuk Y, Sahun K, Stashkevych O, Badlo V, Shablykin O, Sadkova I, Bortnichuk L, Klymenko-Ulianov O, Holota Y, Lachmann L, Borysko P, Horbatok K, Bodenchuk I, Bas Y, Dudenko D, Mykhailiuk PK. 2-Oxabicyclo[2.2.2]octane as a new bioisostere of the phenyl ring. Nat Commun 2023; 14: 5608.
| Crossref | Google Scholar | PubMed |
157 Barrett RRG, Nash C, Diennet M, Cotnoir-White D, Doyle C, Mader S, Thomson AA, Gleason JL. Dual-function antiandrogen/HDACi hybrids based on enzalutamide and entinostat. Bioorg Med Chem Lett 2022; 55: 128441.
| Crossref | Google Scholar | PubMed |
158 Moi D, Citarella A, Bonanni D, Pinzi L, Passarella D, Silvani A, Giannini C, Rastelli G. Synthesis of potent and selective HDAC6 inhibitors led to unexpected opening of a quinazoline ring. RSC Adv 2022; 12: 11548-11556.
| Crossref | Google Scholar | PubMed |
159 Sheth G, Shah SR, Sengupta P, Jarag T, Chimanwala S, Sairam KVVM, Jain V, Talwar R, Dhanave A, Raviya M, Menon S, Trivedi S, Chitturi TR. In the quest for potent and selective malic enzyme 3 inhibitors for the treatment of pancreatic ductal adenocarcinoma. ACS Med Chem Lett 2023; 14: 41-50.
| Crossref | Google Scholar | PubMed |
160 Banjo S, Nakata K, Nakasuji E, Yasui S, Chida N, Sato T. Copper-catalyzed electrophilic enamidation using dioxazolones through hydrozirconation of alkynes. Org Lett 2022; 24: 8662-8666.
| Crossref | Google Scholar | PubMed |
161 Zwergel C, Di Bello E, Fioravanti R, Conte M, Nebbioso A, Mazzone R, Brosch G, Mercurio C, Varasi M, Altucci L, Valente S, Mai A. Novel pyridine-based hydroxamates and 2′-aminoanilides as histone deacetylase inhibitors: biochemical profile and anticancer activity. ChemMedChem 2021; 16: 989-999.
| Crossref | Google Scholar | PubMed |
162 Zagni C, Citarella A, Oussama M, Rescifina A, Maugeri A, Navarra M, Scala A, Piperno A, Micale N. Hydroxamic acid-based histone deacetylase (HDAC) inhibitors bearing a pyrazole scaffold and a cinnamoyl linker. Int J Mol Sci 2019; 20: 945.
| Crossref | Google Scholar | PubMed |
163 Giacomelli G, Porcheddu A, Salaris M. Simple one-flask method for the preparation of hydroxamic acids. Org Lett 2003; 5: 2715-2717.
| Crossref | Google Scholar | PubMed |
164 Allegretti M, Bertini R, Cesta MC, Bizzarri C, Di Bitondo R, Di Cioccio V, Galliera E, Berdini V, Topai A, Zampella G, Russo V, Di Bello N, Nano G, Nicolini L, Locati M, Fantucci P, Florio S, Colotta F. 2-Arylpropionic CXC chemokine receptor 1 (CXCR1) ligands as novel noncompetitive CXCL8 inhibitors. Journal of Medicinal Chemistry 2005; 48(13): 4312-4331.
| Crossref | Google Scholar |
165 Ghazy E, Heimburg T, Lancelot J, Zeyen P, Schmidtkunz K, Truhn A, Darwish S, Simoben CV, Shaik TB, Erdmann F, Schmidt M, Robaa D, Romier C, Jung M, Pierce R, Sippl W. Synthesis, structure–activity relationships, cocrystallization and cellular characterization of novel smHDAC8 inhibitors for the treatment of schistosomiasis. European Journal of Medicinal Chemistry 2021; 225: 113745.
| Crossref | Google Scholar |
166 Su S, Zhang Y, Liu P, Wink DJ, Lee D. Intramolecular carboxyamidation of alkyne-tethered O-acylhydroxamates through formation of Fe(III)-nitrenoids. Chem – Eur J 2024; 30: e202303428.
| Crossref | Google Scholar | PubMed |
167 Tufano E, Lee E, Barilli M, Casali E, Oštrek A, Jung H, Morana M, Kang J, Kim D, Chang S, Zanoni G. Iridium acylnitrenoid-initiated biomimetic cascade cyclizations: stereodefined access to polycyclic δ-lactams. J Am Chem Soc 2023; 145: 24724-24735.
| Crossref | Google Scholar | PubMed |
168 Kharitonov YV, Antipova VI, Marenina MK, Meshkova YV, Tolstikova TG, Shults EE. Synthetic transformations of higher terpenoids. 43. Synthesis and cytotoxic properties of new lambertianic acid derivatives at the carboxylic group. Chem Nat Compd 2023; 59: 1109-1121.
| Crossref | Google Scholar |
169 Zeng W, Zeng G, Qin S. Recent advances in the synthesis and application of hydroxamic acid. Chin J Org Chem 2003; 23: 1213-1218.
| Google Scholar |
170 Kumari P, Ghosh S, Acharya S, Mitra P, Roy S, Ghosh S, Maji M, Singh S, Mukherjee A. Cytotoxic imidazolyl-mesalazine ester-based Ru(II) complexes reduce expression of stemness genes and induce differentiation of oral squamous cell carcinoma. J Med Chem 2023; 66: 14061-14079.
| Crossref | Google Scholar | PubMed |
171 Qin P, Ran Y, Xie F, Liu Y, Wei C, Luan X, Wu J. Design, synthesis, and biological evaluation of novel N-Benzyl piperidine derivatives as potent HDAC/AChE inhibitors for Alzheimer’s disease. Bioorg Med Chem 2023; 80: 117178.
| Crossref | Google Scholar | PubMed |
172 Chen L, Zhang Y, Tian L, Wang C, Deng T, Zheng X, Wang T, Li Z, Tang Z, Meng Q, Sun H, Li L, Ma X, Xu Y. Noncovalent EGFR T790M/L858R inhibitors based on diphenylpyrimidine scaffold: design, synthesis, and bioactivity evaluation for the treatment of NSCLC. Eur J Med Chem 2021; 223: 113626.
| Crossref | Google Scholar | PubMed |
173 Marapaka AK, Sankoju P, Zhang G, Ding Y, Ma C, Pillalamarri V, Sudhakar R, Reddi B, Sijwali PS, Zhang Y, Addlagatta A. Development of peptidomimetic hydroxamates as PfA-M1 and PfA-M17 dual inhibitors: biological evaluation and structural characterization by cocrystallization. Chin Chem Lett 2022; 33: 2550-2554.
| Crossref | Google Scholar |
174 Widlicka DW, Murray JC, Coffman KJ, Xiao C, Brodney MA, Rainville JP, Samas B. Two routes to 4-fluorobenzisoxazol-3-one in the synthesis of a 5-HT4 partial agonist. Org Process Res Dev 2016; 20: 233-241.
| Crossref | Google Scholar |
175 Komogortsev AN, Lichitskii BV, Melekhina VG. 1,1′-Carbonyldiimidazole-mediated transformation of allomaltol containing hydrazides into substituted 3-acetyltetronic acids. Org Biomol Chem 2023; 21: 7224-7230.
| Crossref | Google Scholar | PubMed |
176 Zhang S-W, Gong C-J, Su M-B, Chen F, He T, Zhang Y-M, Shen Q-Q, Su Y, Ding J, Li J, Chen Y, Nan F-J. Synthesis and in vitro and in vivo biological evaluation of tissue-specific bisthiazole histone deacetylase (HDAC) inhibitors. J Med Chem 2020; 63: 804-815.
| Crossref | Google Scholar | PubMed |
177 Ho CY, Strobel E, Ralbovsky J, Galemmo RA. Improved solution- and solid-phase preparation of hydroxamic acids from esters. J Org Chem 2005; 70: 4873-4875.
| Crossref | Google Scholar | PubMed |
178 Cruz DL, Pipalia N, Mao S, Gadi D, Liu G, Grigalunas M, O’Neill M, Quinn TR, Kipper A, Ekebergh A, Dimmling A, Gartner C, Melancon BJ, Wagner FF, Holson E, Helquist P, Wiest O, Maxfield FR. Inhibition of histone deacetylases 1, 2, and 3 enhances clearance of cholesterol accumulation in Niemann–Pick C1 fibroblasts. ACS Pharmacol Transl Sci 2021; 4: 1136-1148.
| Crossref | Google Scholar | PubMed |
179 Liang X, Lv B, Sun S, Wu Z, Lin B, Bao X, Chen G. A base-free hydroxylaminolysis protocol promoted by ZnO in deep eutectic solvents. Green Chem 2023; 25: 2446-2452.
| Crossref | Google Scholar |
180 Giacomini E, Nebbioso A, Ciotta A, Ianni C, Falchi F, Roberti M, Tolomeo M, Grimaudo S, Cristina AD, Pipitone RM, Altucci L, Recanatini M. Novel antiproliferative chimeric compounds with marked histone deacetylase inhibitory activity. ACS Med Chem Lett 2014; 5: 973-978.
| Crossref | Google Scholar | PubMed |
181 Beillard A, Bhurruth-Alcor Y, Bouix-Peter C, Bouquet K, Chambon S, Clary L, Harris CS, Millois C, Mouis G, Ouvry G, Pierre R, Reitz A, Tomas L. A facile and rapid preparation of hydroxamic acids by hydroxylaminolysis using DBU as base. Tetrahedron Lett 2016; 57: 2165-2170.
| Crossref | Google Scholar |
182 Hoffmann C. Ueber Hydroxamsäuren der Fettreihe. Ber Dtsch Chem Ges 1889; 22: 2854-2856 [In German].
| Crossref | Google Scholar |
183 Bandara HMD, Jin D, Mantell MA, Field KD, Wang A, Narayanan RP, Deskins NA, Emmert MH. Non-directed aromatic C–H amination: catalytic and mechanistic studies enabled by Pd catalyst and reagent design. Catal Sci Technol 2016; 6: 5304-5310.
| Crossref | Google Scholar | PubMed |
184 Allen CL, Atkinson BN, Williams JMJ. Transamidation of primary amides with amines using hydroxylamine hydrochloride as an inorganic catalyst. Angew Chem Int Ed 2012; 51: 1383-1386.
| Crossref | Google Scholar | PubMed |
185 Weber P, Fonvielle M, Therisod M. New facile synthesis of phosphoglycolohydroxamic acid and other phosphoglycolic acid derivatives. Tetrahedron Lett 2003; 44: 9047-9049.
| Crossref | Google Scholar |
186 Angeli A. Sopra la nitroidrossilammina. Gazz Chim Ital 1896; 26: 17-25 [In Italian].
| Google Scholar |
187 Yale HL. The hydroxamic acids. Chem Rev 1943; 33: 209-256.
| Crossref | Google Scholar |
188 Porcheddu A, Giacomelli G. Angeli–Rimini’s reaction on solid support: a new approach to hydroxamic acids. J Org Chem 2006; 71: 7057-7059.
| Crossref | Google Scholar | PubMed |
189 Higham JI, Bull JA. Copper catalysed oxidative α-sulfonylation of branched aldehydes using the acid enhanced reactivity of manganese(IV) oxide. Chem Commun 2020; 56: 4587-4590.
| Crossref | Google Scholar | PubMed |
190 Sakakibara Y, Cooper P, Murakami K, Itami K. Photoredox-catalyzed decarboxylative oxidation of arylacetic acids. Chem – Asian J 2018; 13: 2410-2413.
| Crossref | Google Scholar | PubMed |
191 Papadopoulos GN, Kokotos CG. Photoorganocatalytic one-pot synthesis of hydroxamic acids from aldehydes. Chem – Eur J 2016; 22: 6964-6967.
| Crossref | Google Scholar | PubMed |
192 Stini NA, Poursaitidis ET, Nikitas NF, Kartsinis M, Spiliopoulou N, Ananida-Dasenaki P, Kokotos CG. Light-accelerated “on-water” hydroacylation of dialkyl azodicarboxylates. Org Biomol Chem 2023; 21: 1284-1293.
| Crossref | Google Scholar | PubMed |
193 Nikitas NF, Apostolopoulou MK, Skolia E, Tsoukaki A, Kokotos CG. Photochemical activation of aromatic aldehydes: synthesis of amides, hydroxamic acids and esters. Chem – Eur J 2021; 27: 7915-7922.
| Crossref | Google Scholar | PubMed |
194 Yao H, Yamamoto K. Aerobic amide bond formation with N-hydroxysuccinimide. Chem – Asian J 2012; 7: 1542-1545.
| Crossref | Google Scholar | PubMed |
195 Pilo M, Porcheddu A, De Luca L. A copper-catalysed amidation of aldehydes via N-hydroxysuccinimide ester formation. Org Biomol Chem 2013; 11: 8241-8246.
| Crossref | Google Scholar | PubMed |
196 Yao H, Tang Y, Yamamoto K. Metal-free oxidative amide formation with N-hydroxysuccinimide and hypervalent iodine reagents. Tetrahedron Lett 2012; 53: 5094-5098.
| Crossref | Google Scholar |
197 Dettori G, Gaspa S, Porcheddu A, De Luca L. One-pot synthesis of hydroxamic acids from aldehydes and hydroxylamine. Adv Synth Catal 2014; 356: 2709-2713.
| Crossref | Google Scholar |
198 Abbasova G, Medjidov A. One-pot synthesis of a new hydroxamic acid and its complexes with metals. Lett Org Chem 2022; 19: 837-841.
| Crossref | Google Scholar |
199 Wimmer S, Hoff K, Martin B, Grewer M, Denni L, Lascorz Massanet R, Raimondi MV, Bülbül EF, Melesina J, Hotop S-K, Haupenthal J, Rohde H, Heisig P, Hirsch AKH, Brönstrup M, Sippl W, Holl R. Synthesis, biological evaluation, and molecular docking studies of aldotetronic acid-based LpxC inhibitors. Bioorg Chem 2023; 131: 106331.
| Crossref | Google Scholar | PubMed |
200 Dettori G, Gaspa S, Porcheddu A, De Luca L. A two-step tandem reaction to prepare hydroxamic acids directly from alcohols. Org Biomol Chem 2014; 12: 4582-4585.
| Crossref | Google Scholar | PubMed |
201 Sosnovsky G, Krogh JA. A new method for the preparation of aliphatic hydroxamic acids; reaction of primary nitroalkanes with selenium dioxide in the presence of triethylamine. Synthesis 1980; 1980: 654-656.
| Crossref | Google Scholar |
202 Krawczyk H, Wolf WM, Śliwiński M. Nitroalkanes as nucleophiles in a self-catalytic Michael reaction. J Chem Soc, Perkin Trans 1 2002; 2002(24): 242794-242798.
| Crossref | Google Scholar |
203 Vejvoda V, Martínková L, Veselá AB, Kaplan O, Lutz-Wahl S, Fischer L, Uhnáková B. Biotransformation of nitriles to hydroxamic acids via a nitrile hydratase–amidase cascade reaction. J Mol Catal – B. Enzym 2011; 71: 51-55.
| Crossref | Google Scholar |
204 Adam W, Zhao C, Jakka K. Dioxirane oxidations of compounds other than alkenes. In: Denmark SE, editor. Organic Reactions. Wiley; 2008; pp. 1–346. 10.1002/0471264180.or069.01
205 Chen ZL, Wang Q. Synthesis of O-aminophenols via a formal insertion reaction of arynes into hydroxyindolinones. Org Lett 2015-12-18; 17(24): 6130-6133.
| Crossref | Google Scholar | PubMed |
206 Zhang Y, Sun S, Su Y, Zhao J, Li Y-H, Han B, Shi F. Deconstructive di-functionalization of unstrained, benzo cyclic amines by C–N bond cleavage using a recyclable tungsten catalyst. Org Biomol Chem 2019; 17: 4970-4974.
| Crossref | Google Scholar | PubMed |
207 Yamada YMA, Tabata H, Ichinohe M, Takahashi H, Ikegami S. Oxidation of allylic alcohols, amines, and sulfides mediated by assembled triphase catalyst of phosphotungstate and non-cross-linked amphiphilic copolymer. Tetrahedron 2004; 60: 4087-4096.
| Crossref | Google Scholar |
208 Riva E, Gagliardi S, Mazzoni C, Passarella D, Rencurosi A, Vigo D, Martinelli M. Efficient continuous flow synthesis of hydroxamic acids and suberoylanilide hydroxamic acid preparation. J Org Chem 2009; 74: 3540-3543.
| Crossref | Google Scholar | PubMed |
209 Kobayashi M, Komeda H, Nagasawa T, Nishiyama M, Horinouchi S, Beppu T, Yamada H, Shimizu S. Amidase coupled with low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J. Eur J Biochem 1993; 217: 327-336.
| Crossref | Google Scholar | PubMed |
210 Fournand D, Bigey F, Arnaud A. Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: formation of a wide range of hydroxamic acids. Appl Environ Microbiol 1998; 64: 2844-2852.
| Crossref | Google Scholar | PubMed |
211 Zheng R-C, Zheng Y-G, Shen Y-C. A screening system for active and enantioselective amidase based on its acyl transfer activity. Appl Microbiol Biotechnol 2007; 74: 256-262.
| Crossref | Google Scholar | PubMed |
212 Pandey D, Singh R, Chand D. An improved bioprocess for synthesis of acetohydroxamic acid using DTT (dithiothreitol) treated resting cells of Bacillus sp. APB-6. Bioresour Technol 2011; 102: 6579-6586.
| Crossref | Google Scholar | PubMed |
213 Bhatia RK, Bhatia SK, Mehta PK, Bhalla TC. Bench scale production of benzohydroxamic acid using acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674. J Ind Microbiol Biotechnol 2013; 40: 21-27.
| Crossref | Google Scholar | PubMed |
214 Sharma H, Singh RV, Ganjoo A, Kumar A, Singh R, Babu V. Development of effective biotransformation process for benzohydroxamic acid production using Bacillus smithii IIIMB2907. 3 Biotech 2022; 12: 44.
| Crossref | Google Scholar | PubMed |
215 Singh RV, Sharma H, Ganjoo A, Kumar A, Babu V. Novel amidase catalysed process for the synthesis of vorinostat drug. J Appl Microbiol 2020; 129: 1589-1597.
| Crossref | Google Scholar | PubMed |
216 Jäger C, Nieger M, Rissanen K, Deska J. Multienzymatic synthesis of γ-lactam building blocks from unsaturated esters and hydroxylamine. Eur J Org Chem 2023; 26: e202300288.
| Crossref | Google Scholar |
217 Kwak S-Y, Yang J-K, Choi H-R, Park K-C, Kim Y-B, Lee Y-S. Synthesis and dual biological effects of hydroxycinnamoyl phenylalanyl/prolyl hydroxamic acid derivatives as tyrosinase inhibitor and antioxidant. Bioorg Med Chem Lett 2013; 23: 1136-1142.
| Crossref | Google Scholar | PubMed |
218 Cal M, Jaremko M, Jaremko Ł, Stefanowicz P. Solid phase synthesis of peptide hydroxamic acids on poly(ethylene glycol)-based support. J Pept Sci 2013; 19: 9-15.
| Crossref | Google Scholar | PubMed |
219 Hamper B, Sullivan B, Rath N, Spilling C. A practical gram-scale synthesis of acrylohydroxamic acid. Synthesis 2017; 49: 5335-5338.
| Crossref | Google Scholar |
220 Yin Z, Low K, Lye P. N‐Linked hydroxylamine resin: solid‐phase synthesis of hydroxamic acids. Synth Commun 2005; 35: 2945-2950.
| Crossref | Google Scholar |
221 Ramsbeck D, Hamann A, Schlenzig D, Schilling S, Buchholz M. First insight into structure-activity relationships of selective meprin β inhibitors. Bioorg Med Chem Lett 2017; 27: 2428-2431.
| Crossref | Google Scholar | PubMed |
222 Sixto-López Y, Gómez-Vidal JA, De Pedro N, Bello M, Rosales-Hernández MC, Correa-Basurto J. In silico design of HDAC6 inhibitors with neuroprotective effects. J Biomol Struct Dyn 2022; 40: 14204-14222.
| Crossref | Google Scholar | PubMed |
223 Sixto-López Y, Gómez-Vidal JA, De Pedro N, Bello M, Rosales-Hernández MC, Correa-Basurto J. Hydroxamic acid derivatives as HDAC1, HDAC6 and HDAC8 inhibitors with antiproliferative activity in cancer cell lines. Sci Rep 2020; 10: 10462.
| Crossref | Google Scholar | PubMed |
224 Bang CG, Jensen JF, O’Hanlon Cohrt E, Olsen LB, Siyum SG, Mortensen KT, Skovgaard T, Berthelsen J, Yang L, Givskov M, Qvortrup K, Nielsen TE. A Linker for the solid-phase synthesis of hydroxamic acids and identification of HDAC6 inhibitors. ACS Comb Sci 2017; 19: 657-669.
| Crossref | Google Scholar | PubMed |
225 Nandurkar NS, Petersen R, Qvortrup K, Komnatnyy VV, Taveras KM, Le Quement ST, Frauenlob R, Givskov M, Nielsen TE. A convenient procedure for the solid-phase synthesis of hydroxamic acids on PEGA resins. Tetrahedron Lett 2011; 52: 7121-7124.
| Crossref | Google Scholar |
226 Pabba C, Gregg BT, Kitchen DB, Chen ZJ, Judkins A. Design and synthesis of aryl ether and sulfone hydroxamic acids as potent histone deacetylase (HDAC) inhibitors. Bioorg Med Chem Lett 2011; 21: 324-328.
| Crossref | Google Scholar | PubMed |
227 Kumar A, Kuang Y, Liang Z, Sun X. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Mater Today Nano 2020; 11: 100076.
| Crossref | Google Scholar |
228 Mori M, Massaro A, Calderone V, Fragai M, Luchinat C, Mordini A. Discovery of a new class of potent MMP inhibitors by structure-based optimization of the arylsulfonamide scaffold. ACS Med Chem Lett 2013; 4: 565-569.
| Crossref | Google Scholar | PubMed |
229 Tan K, Jäger C, Körschgen H, Geissler S, Schlenzig D, Buchholz M, Stöcker W, Ramsbeck D. Heteroaromatic Inhibitors of the astacin proteinases meprin α, meprin β and ovastacin discovered by a scaffold-hopping approach. ChemMedChem 2021; 16: 976-988.
| Crossref | Google Scholar | PubMed |
230 Kurz T, Pein MK, Marek L, Behrendt CT, Spanier L, Kuna K, Brücher K. Microwave-assisted conversion of 4-nitrophenyl esters into O-protected hydroxamic acids. Eur J Org Chem 2009; 2009: 2939-2942.
| Crossref | Google Scholar |